Displaying similar documents to “Projective limits of topological algebras”

Left-right projective bimodules and stable equivalences of Morita type

Zygmunt Pogorzały (2001)

Colloquium Mathematicae

Similarity:

We study a connection between left-right projective bimodules and stable equivalences of Morita type for finite-dimensional associative algebras over a field. Some properties of the category of all finite-dimensional left-right projective bimodules for self-injective algebras are also given.

Ultragraph C*-algebras via topological quivers

Takeshi Katsura, Paul S. Muhly, Aidan Sims, Mark Tomforde (2008)

Studia Mathematica

Similarity:

Given an ultragraph in the sense of Tomforde, we construct a topological quiver in the sense of Muhly and Tomforde in such a way that the universal C*-algebras associated to the two objects coincide. We apply results of Muhly and Tomforde for topological quiver algebras and of Katsura for topological graph C*-algebras to study the K-theory and gauge-invariant ideal structure of ultragraph C*-algebras.

Homography in ℝℙ

Roland Coghetto (2016)

Formalized Mathematics

Similarity:

The real projective plane has been formalized in Isabelle/HOL by Timothy Makarios [13] and in Coq by Nicolas Magaud, Julien Narboux and Pascal Schreck [12]. Some definitions on the real projective spaces were introduced early in the Mizar Mathematical Library by Wojciech Leonczuk [9], Krzysztof Prazmowski [10] and by Wojciech Skaba [18]. In this article, we check with the Mizar system [4], some properties on the determinants and the Grassmann-Plücker relation in rank 3 [2], [1], [7],...

Algebras standardly stratified in all orders

Fidel Hernández Advíncula, Eduardo do Nascimento Marcos (2007)

Colloquium Mathematicae

Similarity:

The aim of this work is to characterize the algebras which are standardly stratified with respect to any order of the simple modules. We show that such algebras are exactly the algebras with all idempotent ideals projective. We also deduce as a corollary a characterization of hereditary algebras, originally due to Dlab and Ringel.

Pascal’s Theorem in Real Projective Plane

Roland Coghetto (2017)

Formalized Mathematics

Similarity:

In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a special case of a degenerate conic of two lines. For proving Pascal’s theorem, we use the techniques developed in the section “Projective Proofs of Pappus’ Theorem” in the chapter “Pappus’ Theorem: Nine proofs and three variations” [11]. We also follow some ideas from Harrison’s...