On the uniqueness of initial-value problems for partial differential equations of the first order
P. Besala (1983)
Annales Polonici Mathematici
Similarity:
P. Besala (1983)
Annales Polonici Mathematici
Similarity:
Tadeusz Śliwa (1981)
Colloquium Mathematicae
Similarity:
Marija Skendžić (1970)
Publications de l'Institut Mathématique
Similarity:
T. Jankowski, M. Kwapisz (1972)
Annales Polonici Mathematici
Similarity:
Krzysztof A. Topolski (2015)
Annales Polonici Mathematici
Similarity:
We present an existence theorem for the Cauchy problem related to linear partial differential-functional equations of an arbitrary order. The equations considered include the cases of retarded and deviated arguments at the derivatives of the unknown function. In the proof we use Tonelli's constructive method. We also give uniqueness criteria valid in a wide class of admissible functions. We present a set of examples to illustrate the theory.
Jan Persson (1976)
Publications mathématiques et informatique de Rennes
Similarity:
J. Ligęza (1975)
Colloquium Mathematicae
Similarity:
Raetz, Juerg (1983)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Tadeusz Śliwa (1980)
Colloquium Mathematicae
Similarity:
Byszewski, L. (1993)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Mozgawa, Witold (2009)
Beiträge zur Algebra und Geometrie
Similarity:
Rebelo, C. (2000)
Portugaliae Mathematica
Similarity:
M. Stojanović (1974)
Matematički Vesnik
Similarity:
Winkler, Jörg (1993)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Jan Persson (1973)
Mathematische Annalen
Similarity:
Henryk Kołakowski, Jarosław Łazuka (2008)
Applicationes Mathematicae
Similarity:
The aim of this paper is to derive a formula for the solution to the Cauchy problem for the linear system of partial differential equations describing nonsimple thermoelasticity. Some properties of the solution are also presented. It is a first step to study the nonlinear case.