Continuum broken symmetry and more
Charles Perry (2001)
Visual Mathematics
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Charles Perry (2001)
Visual Mathematics
Similarity:
S. Drobot (1971)
Applicationes Mathematicae
Similarity:
George W. Henderson (1971)
Colloquium Mathematicae
Similarity:
Mirosław Sobolewski (1984)
Fundamenta Mathematicae
Similarity:
D. Daniel, C. Islas, R. Leonel, E. D. Tymchatyn (2015)
Colloquium Mathematicae
Similarity:
We revisit an old question of Knaster by demonstrating that each non-degenerate plane hereditarily unicoherent continuum X contains a proper, non-degenerate subcontinuum which does not separate X.
Jerzy Krzempek (2004)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
It is shown that a certain indecomposable chainable continuum is the domain of an exactly two-to-one continuous map. This answers a question of Jo W. Heath.
Sergio Macías, Patricia Pellicer-Covarrubias (2012)
Colloquium Mathematicae
Similarity:
We continue the study of 1/2-homogeneity of the hyperspace suspension of continua. We prove that if X is a decomposable continuum and its hyperspace suspension is 1/2-homogeneous, then X must be continuum chainable. We also characterize 1/2-homogeneity of the hyperspace suspension for several classes of continua, including: continua containing a free arc, atriodic and decomposable continua, and decomposable irreducible continua about a finite set.
Hisao Kato (1996)
Fundamenta Mathematicae
Similarity:
A homeomorphism f:X → X of a compactum X with metric d is expansive if there is c > 0 such that if x,y ∈ X and x ≠ y, then there is an integer n ∈ ℤ such that . A homeomorphism f: X → X is continuum-wise expansive if there is c > 0 such that if A is a nondegenerate subcontinuum of X, then there is an integer n ∈ ℤ such that . Clearly, every expansive homeomorphism is continuum-wise expansive, but the converse assertion is not true. In [6], we defined the notion of chaotic continua...
Charatonik, Janusz J., Pyrih, Pavel (2000)
Mathematica Pannonica
Similarity:
T. Maćkowiak (1977)
Fundamenta Mathematicae
Similarity:
J. J. Charatonik (1978)
Colloquium Mathematicae
Similarity:
P. Spyrou (1992)
Matematički Vesnik
Similarity:
D. E. Bennett, J. B. Fugate
Similarity:
CONTENTSIntroduction......................................................................................................................................... 5Preliminaries...................................................................................................................................... 6Chapter I. Basic types and properties of non-separating continua......................................... 7 Terminal and end continua............................................................................................................