The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Space-time coordinate transformations in continuum mechanics invariable equations of thermomechanics”

Non-separating subcontinua of planar continua

D. Daniel, C. Islas, R. Leonel, E. D. Tymchatyn (2015)

Colloquium Mathematicae

Similarity:

We revisit an old question of Knaster by demonstrating that each non-degenerate plane hereditarily unicoherent continuum X contains a proper, non-degenerate subcontinuum which does not separate X.

1/2-Homogeneous hyperspace suspensions

Sergio Macías, Patricia Pellicer-Covarrubias (2012)

Colloquium Mathematicae

Similarity:

We continue the study of 1/2-homogeneity of the hyperspace suspension of continua. We prove that if X is a decomposable continuum and its hyperspace suspension is 1/2-homogeneous, then X must be continuum chainable. We also characterize 1/2-homogeneity of the hyperspace suspension for several classes of continua, including: continua containing a free arc, atriodic and decomposable continua, and decomposable irreducible continua about a finite set.

On indecomposability and composants of chaotic continua

Hisao Kato (1996)

Fundamenta Mathematicae

Similarity:

A homeomorphism f:X → X of a compactum X with metric d is expansive if there is c > 0 such that if x,y ∈ X and x ≠ y, then there is an integer n ∈ ℤ such that d ( f n ( x ) , f n ( y ) ) > c . A homeomorphism f: X → X is continuum-wise expansive if there is c > 0 such that if A is a nondegenerate subcontinuum of X, then there is an integer n ∈ ℤ such that d i a m i f n ( A ) > c . Clearly, every expansive homeomorphism is continuum-wise expansive, but the converse assertion is not true. In [6], we defined the notion of chaotic continua...

Continua and their non-separating subcontinua

D. E. Bennett, J. B. Fugate

Similarity:

CONTENTSIntroduction......................................................................................................................................... 5Preliminaries...................................................................................................................................... 6Chapter I. Basic types and properties of non-separating continua......................................... 7 Terminal and end continua............................................................................................................