On Compact Sets of Compact Operators on Banach Spaces not Containing a Copy of l^1
Akkouchi, Mohamed (2016-05-20T09:55:13Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Akkouchi, Mohamed (2016-05-20T09:55:13Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Iryna Banakh, Taras Banakh (2010)
Studia Mathematica
Similarity:
We prove that for each dense non-compact linear operator S: X → Y between Banach spaces there is a linear operator T: Y → c₀ such that the operator TS: X → c₀ is not compact. This generalizes the Josefson-Nissenzweig Theorem.
Teresa Alvarez (1988)
Publicacions Matemàtiques
Similarity:
In this paper we show that a Rosenthal operator factors through a Banach space containing no isomorphs of l.
Hatamleh, Raed (2007)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94. New concepts of linear colligations and dynamic systems, corresponding to the linear operators, acting in the Banach spaces, are introduced. The main properties of the transfer function and its relation to the dual transfer function are established.
V. Rakočević (1984)
Matematički Vesnik
Similarity:
Vladimir M. Kadets, Roman V. Shvidkoy, Dirk Werner (2001)
Studia Mathematica
Similarity:
Let X be a Banach space. We introduce a formal approach which seems to be useful in the study of those properties of operators on X which depend only on the norms of the images of elements. This approach is applied to the Daugavet equation for norms of operators; in particular we develop a general theory of narrow operators and rich subspaces of spaces X with the Daugavet property previously studied in the context of the classical spaces C(K) and L₁(μ).
Andreas Defant, Mieczysław Mastyło (2003)
Studia Mathematica
Similarity:
The Banach operator ideal of (q,2)-summing operators plays a fundamental role within the theory of s-number and eigenvalue distribution of Riesz operators in Banach spaces. A key result in this context is a composition formula for such operators due to H. König, J. R. Retherford and N. Tomczak-Jaegermann. Based on abstract interpolation theory, we prove a variant of this result for (E,2)-summing operators, E a symmetric Banach sequence space.
Bertram Yood (2008)
Studia Mathematica
Similarity:
The set of commutators in a Banach *-algebra A, with continuous involution, is examined. Applications are made to the case where A = B(ℓ₂), the algebra of all bounded linear operators on ℓ₂.
Alfonso Montes-Rodríguez, M. Carmen Romero-Moreno (2002)
Studia Mathematica
Similarity:
We prove a Supercyclicity Criterion for a continuous linear mapping that is defined on the operator algebra of a separable Banach space ℬ. Our result extends a recent result on hypercyclicity on the operator algebra of a Hilbert space. This kind of result is a powerful tool to analyze the structure of supercyclic vectors of a supercyclic operator that is defined on ℬ. For instance, as a consequence of the main result, we give a very simple proof of the recently established fact that...
Pradipta Bandyopadhyay, Bor-Luh Lin, T. S. S. R. K. Rao (2009)
Colloquium Mathematicae
Similarity:
We study Banach spaces X with subspaces Y whose unit ball is densely remotal in X. We show that for several classes of Banach spaces, the unit ball of the space of compact operators is densely remotal in the space of bounded operators. We also show that for several classical Banach spaces, the unit ball is densely remotal in the duals of higher even order. We show that for a separable remotal set E ⊆ X, the set of Bochner integrable functions with values in E is a remotal set in L¹(μ,X). ...
Kislyakov, S.V., Maksimov, D.V. (2005)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Vladimír Lovicar (1975)
Časopis pro pěstování matematiky
Similarity:
M. Mathieu, G. J. Schick (2002)
Studia Mathematica
Similarity:
A linear mapping T from a subspace E of a Banach algebra into another Banach algebra is defined to be spectrally bounded if there is a constant M ≥ 0 such that r(Tx) ≤ Mr(x) for all x ∈ E, where r(·) denotes the spectral radius. We study some basic properties of this class of operators, which are sometimes analogous to, sometimes very different from, those of bounded operators between Banach spaces.
Jerry Johnson, John Wolfe (1979)
Studia Mathematica
Similarity:
Francisco Javier García-Pacheco, Daniele Puglisi (2010)
Studia Mathematica
Similarity:
This article is divided into two parts. The first one is on the linear structure of the set of norm-attaining functionals on a Banach space. We prove that every Banach space that admits an infinite-dimensional separable quotient can be equivalently renormed so that the set of norm-attaining functionals contains an infinite-dimensional vector subspace. This partially solves a question proposed by Aron and Gurariy. The second part is on the linear structure of dominated operators. We show...
Luis Bernal-González (2017)
Open Mathematics
Similarity:
In this paper, a criterion for the existence of large linear algebras consisting, except for zero, of one-to-one operators on an infinite dimensional Banach space is provided. As a consequence, it is shown that every separable infinite dimensional Banach space supports a commutative infinitely generated free linear algebra of operators all of whose nonzero members are one-to-one. In certain cases, the assertion holds for nonseparable Banach spaces.
A. Blanco (2012)
Studia Mathematica
Similarity:
The main result of the note is a characterization of 1-amenability of Banach algebras of approximable operators for a class of Banach spaces with 1-unconditional bases in terms of a new basis property. It is also shown that amenability and symmetric amenability are equivalent concepts for Banach algebras of approximable operators, and that a type of Banach space that was long suspected to lack property 𝔸 has in fact the property. Some further ideas on the problem of whether or not amenability...
Julio Flores, Pedro Tradacete (2008)
Studia Mathematica
Similarity:
It is proved that every positive Banach-Saks operator T: E → F between Banach lattices E and F factors through a Banach lattice with the Banach-Saks property, provided that F has order continuous norm. By means of an example we show that this order continuity condition cannot be removed. In addition, some domination results, in the Dodds-Fremlin sense, are obtained for the class of Banach-Saks operators.
Peter G. Dodds, Anton R. Schep (1982)
Mathematische Zeitschrift
Similarity: