On Noether's bound for polynomial invariants of a finite group.
Fogarty, John (2001)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Similarity:
Fogarty, John (2001)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Similarity:
Luiz C. Martins (1987)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
Cayley-Hamilton theorem is proved by an analytical approach by recalling certain interesting properties of density. In this process, the classical expressions of the principal invariants follow immediately from the proposed proof's scheme.
Uwe Kaiser (1992)
Manuscripta mathematica
Similarity:
J. Kaczorowski, A. Perelli (2002)
Acta Arithmetica
Similarity:
T.D. Cochran (1985)
Inventiones mathematicae
Similarity:
H. Schwerdtfeger (1978)
Aequationes mathematicae
Similarity:
Luiz C. Martins (1987)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
Similarity:
Cayley-Hamilton theorem is proved by an analytical approach by recalling certain interesting properties of density. In this process, the classical expressions of the principal invariants follow immediately from the proposed proof's scheme.
Alexander B. Merkov (1999)
Publications de l'Institut Mathématique
Similarity:
Alexander Merkurjev (2016)
Journal of the European Mathematical Society
Similarity:
We study the degree 3 cohomological invariants with coefficients in of a semisimple group over an arbitrary field. A list of all invariants of adjoint groups of inner type is given.
Yuka Kotorii (2014)
Fundamenta Mathematicae
Similarity:
We define finite type invariants for cyclic equivalence classes of nanophrases and construct universal invariants. Also, we identify the universal finite type invariant of degree 1 essentially with the linking matrix. It is known that extended Arnold basic invariants to signed words are finite type invariants of degree 2, by Fujiwara's work. We give another proof of this result and show that those invariants do not provide the universal one of degree 2.
George R. Kempf (1993)
Inventiones mathematicae
Similarity:
Stavros Garoufalidis (2004)
Fundamenta Mathematicae
Similarity:
We formulate a conjectural formula for Khovanov's invariants of alternating knots in terms of the Jones polynomial and the signature of the knot.
Sadayoshi Kojima, Masyuki Yamasaki (1979)
Inventiones mathematicae
Similarity:
Kathryn J. Horadam (1982)
Mathematische Zeitschrift
Similarity:
Kulish, P.P., Nikitin, A.M. (2000)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Holger Meinert (1994)
Commentarii mathematici Helvetici
Similarity: