The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Mapping arcwise connected continua onto cyclic continua”

A weakly chainable uniquely arcwise connected continuum without the fixed point property

Mirosław Sobolewski (2015)

Fundamenta Mathematicae

Similarity:

A continuum is a metric compact connected space. A continuum is chainable if it is an inverse limit of arcs. A continuum is weakly chainable if it is a continuous image of a chainable continuum. A space X is uniquely arcwise connected if any two points in X are the endpoints of a unique arc in X. D. P. Bellamy asked whether if X is a weakly chainable uniquely arcwise connected continuum then every mapping f: X → X has a fixed point. We give a counterexample.