Independent subsets in semilattices
G. Szász (1970)
Colloquium Mathematicae
Similarity:
G. Szász (1970)
Colloquium Mathematicae
Similarity:
J.W. jr. Lea (1976/77)
Semigroup forum
Similarity:
R. E. Jamison (1977/78)
Semigroup forum
Similarity:
Barry J. Arnow (1978)
Colloquium Mathematicae
Similarity:
K. Głazek (1968)
Colloquium Mathematicae
Similarity:
G.A. Fraser (1976/77)
Semigroup forum
Similarity:
Edward Marczewski (1963)
Colloquium Mathematicum
Similarity:
B. Węglorz (1967)
Colloquium Mathematicae
Similarity:
Evelyn Nelson (1975)
Colloquium Mathematicae
Similarity:
R. Padmanabhan (1966)
Colloquium Mathematicae
Similarity:
Zuzana Heleyová (2000)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
It is known that congruence lattices of pseudocomplemented semilattices are pseudocomplemented [4]. Many interesting properties of congruences on pseudocomplemented semilattices were described by Sankappanavar in [4], [5], [6]. Except for other results he described congruence distributive pseudocomplemented semilattices [6] and he characterized pseudocomplemented semilattices whose congruence lattices are Stone, i.e. belong to the variety B₁ [5]. In this paper we give a partial solution...
D. Kurepa (1969)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity: