θ-continuous extensions of maps on τX
L. Rudolf (1972)
Fundamenta Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
L. Rudolf (1972)
Fundamenta Mathematicae
Similarity:
D. W. Hajek (1986)
Matematički Vesnik
Similarity:
A. Błaszczyk, U. Lorek (1978)
Colloquium Mathematicae
Similarity:
Paweł Szeptycki (1975)
Studia Mathematica
Similarity:
R. F. Dickman, R. A. McCoy
Similarity:
CONTENTS1. Introduction...................................................52. ℬ-filters and ℬ-compactifications..................63. The weight of φX.........................................124. Other properties of φX................................155. Extensions of maps and subspaces............216. Subordinate subsets of C*(X)......................257. Quasi-component spaces...........................308. References.................................................33
T. K. Pal, M. Maiti, J. Achari (1976)
Matematički Vesnik
Similarity:
David Handel (1980)
Fundamenta Mathematicae
Similarity:
Tikoo, Mohan (1998)
International Journal of Mathematics and Mathematical Sciences
Similarity:
H. A. Antosiewicz, A. Cellina (1977)
Annales Polonici Mathematici
Similarity:
Aarts J. M. (1971)
Colloquium Mathematicum
Similarity:
M. R. Koushesh
Similarity:
Let X be a space. A space Y is called an extension of X if Y contains X as a dense subspace. For an extension Y of X the subspace Y∖X of Y is called the remainder of Y. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X pointwise. For two (equivalence classes of) extensions Y and Y' of X let Y ≤ Y' if there is a continuous mapping of Y' into Y which fixes X pointwise. Let 𝓟 be a topological property. An extension Y of X is called a 𝓟-extension...