On interpolation polynomials of the Hermite-Fejér type
T. M. Mills (1976)
Colloquium Mathematicae
Similarity:
T. M. Mills (1976)
Colloquium Mathematicae
Similarity:
J. L. Walsh (1962)
Annales Polonici Mathematici
Similarity:
Newman, D.J., Rubel, L.A. (1979)
International Journal of Mathematics and Mathematical Sciences
Similarity:
A. Goncharov (2005)
Banach Center Publications
Similarity:
We suggest a modification of the Pawłucki and Pleśniak method to construct a continuous linear extension operator by means of interpolation polynomials. As an illustration we present explicitly the extension operator for the space of Whitney functions given on the Cantor ternary set.
Phung Van Manh (2015)
Annales Polonici Mathematici
Similarity:
We give a new poised bivariate Hermite scheme and a formula for the interpolation polynomial. We show that the Hermite interpolation polynomial is the limit of bivariate Lagrange interpolation polynomials at Bos configurations on circles.
Branga, Adrian (1998)
General Mathematics
Similarity:
Rene Piedra (1989)
Banach Center Publications
Similarity:
A. ZENÍSEK (1970)
Numerische Mathematik
Similarity:
R. Taberski (1974)
Colloquium Mathematicae
Similarity:
R. Taberski (1971)
Colloquium Mathematicae
Similarity:
S. Hartman (1968)
Colloquium Mathematicae
Similarity:
R. Taberski (1972)
Colloquium Mathematicae
Similarity:
Šolín, Pavel, Segeth, Karel
Similarity:
Interpolation on finite elements usually occurs in a Hilbert space setting, which means that interpolation techniques involving orthogonal projection are an alternative for the traditional Lagrange nodal interpolation schemes. In addition to the Lagrange interpolation, this paper discusses the global orthogonal projection and the projection-based interpolation. These techniques are compared from the point of view of quality, efficiency, sensitivity to input parameters and other aspects....