On the theorem of Meusnier in Weyl spaces
A. Szybiak, Trán dinh Vién (1973)
Annales Polonici Mathematici
Similarity:
A. Szybiak, Trán dinh Vién (1973)
Annales Polonici Mathematici
Similarity:
A. K. Varma, J. Prasad (1970)
Annales Polonici Mathematici
Similarity:
J. M. Gandhi (1970)
Matematički Vesnik
Similarity:
B. Martić (1975)
Matematički Vesnik
Similarity:
D. Ž. Đoković (1967)
Publications de l'Institut Mathématique
Similarity:
J. D. Kečkić, I. B. Lacković (1970)
Matematički Vesnik
Similarity:
Josip E. Pečarić (1982)
Publications de l'Institut Mathématique
Similarity:
Paul R. Beesack (1977)
Annales Polonici Mathematici
Similarity:
Kazimierz Włodarczyk (1980)
Annales Polonici Mathematici
Similarity:
Bernd Carl, Andreas Defant, Doris Planer (2014)
Studia Mathematica
Similarity:
Given an infinite-dimensional Banach space Z (substituting the Hilbert space ℓ₂), the s-number sequence of Z-Weyl numbers is generated by the approximation numbers according to the pattern of the classical Weyl numbers. We compare Weyl numbers with Z-Weyl numbers-a problem originally posed by A. Pietsch. We recover a result of Hinrichs and the first author showing that the Weyl numbers are in a sense minimal. This emphasizes the outstanding role of Weyl numbers within the theory of eigenvalue...
Barbora Batíková, Tomáš J. Kepka, Petr C. Němec (2020)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In this note, particular inequalities of DVT-type in real and integer numbers are investigated.
Branislav Martić (1979)
Publications de l'Institut Mathématique
Similarity:
Fumio Narita (2007)
Colloquium Mathematicae
Similarity:
We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein-Weyl structure. Moreover, we investigate the Einstein-Weyl structure of canonical variations of the total space with Einstein-Weyl structure.