The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On some integral inequalities of Weyl type”

Weyl numbers versus Z-Weyl numbers

Bernd Carl, Andreas Defant, Doris Planer (2014)

Studia Mathematica

Similarity:

Given an infinite-dimensional Banach space Z (substituting the Hilbert space ℓ₂), the s-number sequence of Z-Weyl numbers is generated by the approximation numbers according to the pattern of the classical Weyl numbers. We compare Weyl numbers with Z-Weyl numbers-a problem originally posed by A. Pietsch. We recover a result of Hinrichs and the first author showing that the Weyl numbers are in a sense minimal. This emphasizes the outstanding role of Weyl numbers within the theory of eigenvalue...

Inequalities of DVT-type -- the one-dimensional case

Barbora Batíková, Tomáš J. Kepka, Petr C. Němec (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this note, particular inequalities of DVT-type in real and integer numbers are investigated.

Weyl submersions of Weyl manifolds

Fumio Narita (2007)

Colloquium Mathematicae

Similarity:

We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein-Weyl structure. Moreover, we investigate the Einstein-Weyl structure of canonical variations of the total space with Einstein-Weyl structure.