On the theorem of Meusnier in Weyl spaces
A. Szybiak, Trán dinh Vién (1973)
Annales Polonici Mathematici
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. Szybiak, Trán dinh Vién (1973)
Annales Polonici Mathematici
Similarity:
A. K. Varma, J. Prasad (1970)
Annales Polonici Mathematici
Similarity:
J. M. Gandhi (1970)
Matematički Vesnik
Similarity:
B. Martić (1975)
Matematički Vesnik
Similarity:
D. Ž. Đoković (1967)
Publications de l'Institut Mathématique
Similarity:
J. D. Kečkić, I. B. Lacković (1970)
Matematički Vesnik
Similarity:
Josip E. Pečarić (1982)
Publications de l'Institut Mathématique
Similarity:
Paul R. Beesack (1977)
Annales Polonici Mathematici
Similarity:
Kazimierz Włodarczyk (1980)
Annales Polonici Mathematici
Similarity:
Bernd Carl, Andreas Defant, Doris Planer (2014)
Studia Mathematica
Similarity:
Given an infinite-dimensional Banach space Z (substituting the Hilbert space ℓ₂), the s-number sequence of Z-Weyl numbers is generated by the approximation numbers according to the pattern of the classical Weyl numbers. We compare Weyl numbers with Z-Weyl numbers-a problem originally posed by A. Pietsch. We recover a result of Hinrichs and the first author showing that the Weyl numbers are in a sense minimal. This emphasizes the outstanding role of Weyl numbers within the theory of eigenvalue...
Barbora Batíková, Tomáš J. Kepka, Petr C. Němec (2020)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In this note, particular inequalities of DVT-type in real and integer numbers are investigated.
Branislav Martić (1979)
Publications de l'Institut Mathématique
Similarity:
Fumio Narita (2007)
Colloquium Mathematicae
Similarity:
We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein-Weyl structure. Moreover, we investigate the Einstein-Weyl structure of canonical variations of the total space with Einstein-Weyl structure.