On the average of inner and outer measures
D. Fremlin (1991)
Fundamenta Mathematicae
Similarity:
D. Fremlin (1991)
Fundamenta Mathematicae
Similarity:
Yoshihiro Kubokawa (1995)
Czechoslovak Mathematical Journal
Similarity:
Kazimierz Musiał (1980)
Fundamenta Mathematicae
Similarity:
Monika Remy (1988)
Manuscripta mathematica
Similarity:
Schaerf, H.M. (1949)
Portugaliae mathematica
Similarity:
Jan Mycielski (1967)
Fundamenta Mathematicae
Similarity:
B. Jessen (1948)
Colloquium Mathematicae
Similarity:
Kharazishvili, A.B. (1997)
Journal of Applied Analysis
Similarity:
A. Ülger (2007)
Studia Mathematica
Similarity:
Let G be a locally compact abelian group and M(G) its measure algebra. Two measures μ and λ are said to be equivalent if there exists an invertible measure ϖ such that ϖ*μ = λ. The main result of this note is the following: A measure μ is invertible iff |μ̂| ≥ ε on Ĝ for some ε > 0 and μ is equivalent to a measure λ of the form λ = a + θ, where a ∈ L¹(G) and θ ∈ M(G) is an idempotent measure.
Ricardo Faro Rivas, Juan A. Navarro, Juan Sancho (1994)
Extracta Mathematicae
Similarity: