An example of a locally unbounded complete extension of the p-adic number field
W. Więsław (1974)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
W. Więsław (1974)
Colloquium Mathematicae
Similarity:
D. Brink, H. Godinho, P. H. A. Rodrigues (2008)
Acta Arithmetica
Similarity:
José E. Marcos (2006)
Mathematica Slovaca
Similarity:
M. Dodson (1973)
Acta Arithmetica
Similarity:
Nicholas M. Katz (1978)
Inventiones mathematicae
Similarity:
Paulo Ribenboim (2004)
Acta Arithmetica
Similarity:
J. E. Marcos (2002)
Fundamenta Mathematicae
Similarity:
We construct some locally unbounded topological fields having topologically nilpotent elements; this answers a question of Heine. The underlying fields are subfields of fields of formal power series. In particular, we get a locally unbounded topological field for which the set of topologically nilpotent elements is an open additive subgroup. We also exhibit a complete locally unbounded topological field which is a topological extension of the field of p-adic numbers; this topological...
Arnt Volkenborn (1974)
Mémoires de la Société Mathématique de France
Similarity:
Gerlits, J.
Similarity:
L. Bélair, L. Van den Dries (1988)
Manuscripta mathematica
Similarity:
Lawrence Washington (1981)
Acta Arithmetica
Similarity: