Displaying similar documents to “Positive-coefficient elements of Hardy-Orlicz spaces”

On the Banach envelopes of Hardy-Orlicz spaces on an annulus

Michał Rzeczkowski (2016)

Annales Polonici Mathematici

Similarity:

We describe the Banach envelopes of Hardy-Orlicz spaces of analytic functions on an annulus in the complex plane generated by Orlicz functions well-estimated by power-type functions.

Orlicz-Morrey spaces and the Hardy-Littlewood maximal function

Eiichi Nakai (2008)

Studia Mathematica

Similarity:

We prove basic properties of Orlicz-Morrey spaces and give a necessary and sufficient condition for boundedness of the Hardy-Littlewood maximal operator M from one Orlicz-Morrey space to another. For example, if f ∈ L(log L)(ℝⁿ), then Mf is in a (generalized) Morrey space (Example 5.1). As an application of boundedness of M, we prove the boundedness of generalized fractional integral operators, improving earlier results of the author.

Maximal function in Beurling-Orlicz and central Morrey-Orlicz spaces

Lech Maligranda, Katsuo Matsuoka (2015)

Colloquium Mathematicae

Similarity:

We define Beurling-Orlicz spaces, weak Beurling-Orlicz spaces, Herz-Orlicz spaces, weak Herz-Orlicz spaces, central Morrey-Orlicz spaces and weak central Morrey-Orlicz spaces. Moreover, the strong-type and weak-type estimates of the Hardy-Littlewood maximal function on these spaces are investigated.

Orlicz spaces for which the Hardy-Littlewood maximal operators is bounded.

Diego Gallardo (1988)

Publicacions Matemàtiques

Similarity:

Let M be the Hardy-Littlewood maximal operator defined by: Mf(x) = supx ∈ Q 1/|Q| ∫Q |f| dx, (f ∈ Lloc(Rn)), where the supreme is taken over all cubes Q containing x and |Q| is the Lebesgue measure of Q. In this paper we characterize the Orlicz spaces Lφ*, associated to N-functions φ, such that M is bounded in Lφ*....

Smoothness in Musielak-Orlicz spaces equipped with the Orlicz norm.

Henryk Hudzik, Zenon Zbaszyniak (1997)

Collectanea Mathematica

Similarity:

A formula for the distance of an arbitrary element x in Musielak-Orlicz space L^Phi from the subspace E^Phi of order continuous elements is given for both (the Luxemburg and the Orlicz) norms. A formula for the norm in the dual space of L^Phi is given for any of these two norms. Criteria for smooth points and smoothness in L^Phi and E^Phi equipped with the Orlicz norm are presented.