Displaying similar documents to “The Hilbert transform in weighted spaces of integrable vector-valued functions”

The class Bpfor weighted generalized Fourier transform inequalities

Chokri Abdelkefi, Mongi Rachdi (2015)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

In the present paper, we prove weighted inequalities for the Dunkl transform (which generalizes the Fourier transform) when the weights belong to the well-known class Bp. As application, we obtain the Pitt’s inequality for power weights.

q-deformed circularity for an unbounded operator in Hilbert space

Schôichi Ôta (2010)

Colloquium Mathematicae

Similarity:

The notion of strong circularity for an unbounded operator is introduced and studied. Moreover, q-deformed circularity as a q-analogue of circularity is characterized in terms of the partially isometric and the positive parts of the polar decomposition.

Weighted sub-Bergman Hilbert spaces

Maria Nowak, Renata Rososzczuk (2014)

Annales UMCS, Mathematica

Similarity:

We consider Hilbert spaces which are counterparts of the de Branges-Rovnyak spaces in the context of the weighted Bergman spaces A2α, −1 < α < ∞. These spaces have already been studied in [8], [7], [5] and [1]. We extend some results from these papers

On the two weights problem for the Hilbert transform.

Nets Hawk Katz, Cristina Pereyra (1997)

Revista Matemática Iberoamericana

Similarity:

In this paper, we prove sufficient conditions on pairs of weights (u,v) (scalar, matrix or operator valued) so that the Hilbert transform H f(x) = p.v. ∫ [f(y) / x - y] dy, is bounded from L2(u) to L2(v).

Boundedness for a bilinear model sum operator on ℝⁿ

Erin Terwilleger (2007)

Studia Mathematica

Similarity:

The purpose of this article is to obtain a multidimensional extension of Lacey and Thiele's result on the boundedness of a model sum which plays a crucial role in the boundedness of the bilinear Hilbert transform in one dimension. This proof is a simplification of the original proof of Lacey and Thiele modeled after the presentation of Bilyk and Grafakos.