Comparing a Cayley digraph with its reverse.
Abas, M. (2000)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Abas, M. (2000)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Mieczysław Borowiecki, Danuta Michalak (1989)
Banach Center Publications
Similarity:
Peter Horák (1983)
Mathematica Slovaca
Similarity:
Mehdi Behzad, Frank Harary (1977)
Mathematica Slovaca
Similarity:
César Hernández-Cruz (2012)
Discussiones Mathematicae Graph Theory
Similarity:
Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is 3-transitive if the existence of the directed path (u,v,w,x) of length 3 in D implies the existence of the arc (u,x) ∈ A(D). In this article strong 3-transitive digraphs are characterized and the structure of non-strong 3-transitive digraphs is described. The results are used, e.g., to characterize 3-transitive digraphs that are transitive and to characterize 3-transitive digraphs...
Zdzisław Skupień (1999)
Discussiones Mathematicae Graph Theory
Similarity:
Hortensia Galeana-Sánchez, César Hernández-Cruz (2011)
Discussiones Mathematicae Graph Theory
Similarity:
Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k,l)-kernel N of D is a k-independent set of vertices (if u,v ∈ N, u ≠ v, then d(u,v), d(v,u) ≥ k) and l-absorbent (if u ∈ V(D)-N then there exists v ∈ N such that d(u,v) ≤ l). A k-kernel is a (k,k-1)-kernel. Quasi-transitive, right-pretransitive and left-pretransitive digraphs are generalizations of transitive digraphs. In this paper the following results are proved:...
Ruixia Wang (2015)
Discussiones Mathematicae Graph Theory
Similarity:
Let D = (V (D),A(D)) be a digraph and k ≥ 2 be an integer. A subset N of V (D) is k-independent if for every pair of vertices u, v ∈ N, we have d(u, v) ≥ k; it is l-absorbent if for every u ∈ V (D) − N, there exists v ∈ N such that d(u, v) ≤ l. A (k, l)-kernel of D is a k-independent and l-absorbent subset of V (D). A k-kernel is a (k, k − 1)-kernel. A digraph D is k-transitive if for any path x0x1 ・ ・ ・ xk of length k, x0 dominates xk. Hernández-Cruz [3-transitive digraphs, Discuss....
Hortensia Galeana-Sanchez, Laura Pastrana (2009)
Discussiones Mathematicae Graph Theory
Similarity:
Let D be a digraph. V(D) denotes the set of vertices of D; a set N ⊆ V(D) is said to be a k-kernel of D if it satisfies the following two conditions: for every pair of different vertices u,v ∈ N it holds that every directed path between them has length at least k and for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-directed path of length at most k-1. In this paper, we consider some operations on digraphs and prove the existence of k-kernels in digraphs formed...
Hortensia Galeana-Sánchez, José de Jesús García-Ruvalcaba (2001)
Discussiones Mathematicae Graph Theory
Similarity:
A digraph D is called a kernel-perfect digraph or KP-digraph when every induced subdigraph of D has a kernel. We call the digraph D an m-coloured digraph if the arcs of D are coloured with m distinct colours. A path P is monochromatic in D if all of its arcs are coloured alike in D. The closure of D, denoted by ζ(D), is the m-coloured digraph defined as follows: V( ζ(D)) = V(D), and A( ζ(D)) = ∪_{i} {(u,v) with colour i: there exists a monochromatic...
Baskoro, E.T., Miller, M., Širáň, J. (1997)
Acta Mathematica Universitatis Comenianae. New Series
Similarity: