Displaying similar documents to “A variant of a theorem of Sierpiński concerning partitions of continua”

On partitions in cylinders over continua and a question of Krasinkiewicz

Mirosława Reńska (2011)

Colloquium Mathematicae

Similarity:

We show that a metrizable continuum X is locally connected if and only if every partition in the cylinder over X between the bottom and the top of the cylinder contains a connected partition between these sets. J. Krasinkiewicz asked whether for every metrizable continuum X there exists a partiton L between the top and the bottom of the cylinder X × I such that L is a hereditarily indecomposable continuum. We answer this question in the negative. We also present a...

1/2-Homogeneous hyperspace suspensions

Sergio Macías, Patricia Pellicer-Covarrubias (2012)

Colloquium Mathematicae

Similarity:

We continue the study of 1/2-homogeneity of the hyperspace suspension of continua. We prove that if X is a decomposable continuum and its hyperspace suspension is 1/2-homogeneous, then X must be continuum chainable. We also characterize 1/2-homogeneity of the hyperspace suspension for several classes of continua, including: continua containing a free arc, atriodic and decomposable continua, and decomposable irreducible continua about a finite set.

Non-separating subcontinua of planar continua

D. Daniel, C. Islas, R. Leonel, E. D. Tymchatyn (2015)

Colloquium Mathematicae

Similarity:

We revisit an old question of Knaster by demonstrating that each non-degenerate plane hereditarily unicoherent continuum X contains a proper, non-degenerate subcontinuum which does not separate X.

On a conjecture of Andrews.

Padmavathamma, Sudha, T.G. (1993)

International Journal of Mathematics and Mathematical Sciences

Similarity: