On a version of Littlewood-Paley function
P. Szeptycki (1983)
Annales Polonici Mathematici
Similarity:
P. Szeptycki (1983)
Annales Polonici Mathematici
Similarity:
Wu, Changhong, Liu, Lanzhe (2006)
Lobachevskii Journal of Mathematics
Similarity:
Liu, Lanzhe (2003)
Lobachevskii Journal of Mathematics
Similarity:
M. Mateljević, M. Pavlović (1982)
Matematički Vesnik
Similarity:
Avkhadiev, F.G., Wirths, K.-J. (2002)
Lobachevskii Journal of Mathematics
Similarity:
Alberto Torchinsky, Shilin Wang (1990)
Colloquium Mathematicae
Similarity:
Kislyakov, S.V., Parilov, D.V. (2005)
Zapiski Nauchnykh Seminarov POMI
Similarity:
B. Florkiewicz, A. Rybarski (1972)
Colloquium Mathematicae
Similarity:
Guanghui Lu, Dinghuai Wang (2023)
Czechoslovak Mathematical Journal
Similarity:
We study the mapping property of the commutator of Hardy-Littlewood maximal function on Triebel-Lizorkin spaces. Also, some new characterizations of the Lipschitz spaces are given.
Mostafa A. Nasr (1977)
Annales Polonici Mathematici
Similarity:
M. Pavlović (1995)
Publications de l'Institut Mathématique
Similarity:
R. Dror, S. Ganguli, R. Strichartz (1995)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Similarity:
Wengu Chen, Yongsheng Han, Changxing Miao (2006)
Studia Mathematica
Similarity:
We extend the well known factorization theorems on the unit disk to product Hardy spaces, which generalizes the previous results obtained by Coifman, Rochberg and Weiss. The basic tools are the boundedness of a certain bilinear form on ℝ²₊ × ℝ²₊ and the characterization of BMO(ℝ²₊ × ℝ²₊) recently obtained by Ferguson, Lacey and Sadosky.
Leonardo Colzani, Javier Pérez Lázaro (2010)
Colloquium Mathematicae
Similarity:
We prove that peak shaped eigenfunctions of the one-dimensional uncentered Hardy-Littlewood maximal operator are symmetric and homogeneous. This implies that the norms of the maximal operator on L(p) spaces are not attained.