On a Fourier-Bessel series of special kind
S. R. Agrawal, C. M. Patel (1976)
Matematički Vesnik
Similarity:
S. R. Agrawal, C. M. Patel (1976)
Matematički Vesnik
Similarity:
Gray, Alfred, Pinsky, Mark A. (1992)
Experimental Mathematics
Similarity:
Zhang, Qing-Hua, Chen, Shuiming, Qu, Yuanyuan (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
M. Bożejko, T. Pytlik (1972)
Colloquium Mathematicae
Similarity:
M. Mathias (1923)
Mathematische Zeitschrift
Similarity:
J. J. Duistermaat (1973)
Recherche Coopérative sur Programme n°25
Similarity:
Beriša, Muharem C. (1985)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Raimond Struble (1984)
Studia Mathematica
Similarity:
Richard M. Aron, David Pérez-García, Juan B. Seoane-Sepúlveda (2006)
Studia Mathematica
Similarity:
We show that, given a set E ⊂ 𝕋 of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t ∈ E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of 𝓒(𝕋) every non-zero element of which has a Fourier series expansion divergent in E.
T. W. Körner (1981)
Colloquium Mathematicae
Similarity:
(1970)
Czechoslovak Mathematical Journal
Similarity:
William W. Hager (1986/87)
Numerische Mathematik
Similarity: