Displaying similar documents to “An example of a 6-dimensional flat almost Hermitian manifold”

From Sasakian 3-structures to quaternionic geometry

Yoshiyuki Watanabe, Hiroshi Mori (1998)

Archivum Mathematicum

Similarity:

We construct a family of almost quaternionic Hermitian structures from an almost contact metric 3-structure and also do three kinds of quaternionic Kähler structures from a Sasakian 3-structure. In particular we have a generalization of the second main result of Boyer-Galicki-Mann [5].

Superminimal fibres in an almost Hermitian submersion

Bill Watson (2000)

Bollettino dell'Unione Matematica Italiana

Similarity:

Se la varietà base, N , di una submersione quasi-Hermitiana, f : M N , è una G 1 -varietà e le fibre sono subvarietà superminimali, allora lo spazio totale, M , è G 1 . Se la varietà base, N , è Hermitiana e le fibre sono subvarietà bidimensionali e superminimali, allora lo spazio totale, M , è Hermitiano.

An anti-Kählerian Einstein structure on the tangent bundle of a space form

Vasile Oproiu, Neculai Papaghiuc (2005)

Colloquium Mathematicae

Similarity:

In [11] we have considered a family of almost anti-Hermitian structures (G,J) on the tangent bundle TM of a Riemannian manifold (M,g), where the almost complex structure J is a natural lift of g to TM interchanging the vertical and horizontal distributions VTM and HTM and the metric G is a natural lift of g of Sasaki type, with the property of being anti-Hermitian with respect to J. Next, we have studied the conditions under which (TM,G,J) belongs to one of the eight classes of anti-Hermitian...