On the first Chern class of a complex submanifold in an almost Hermitian manifold and the normal connection
Manuel Barros, Florentino G. Santos (1987)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Manuel Barros, Florentino G. Santos (1987)
Colloquium Mathematicae
Similarity:
R. Castro, A. Tarrio (1990)
Annales Polonici Mathematici
Similarity:
Andrew Balas (1987)
Mathematische Zeitschrift
Similarity:
Yoshiyuki Watanabe, Hiroshi Mori (1998)
Archivum Mathematicum
Similarity:
We construct a family of almost quaternionic Hermitian structures from an almost contact metric 3-structure and also do three kinds of quaternionic Kähler structures from a Sasakian 3-structure. In particular we have a generalization of the second main result of Boyer-Galicki-Mann [5].
Bill Watson (2000)
Bollettino dell'Unione Matematica Italiana
Similarity:
Se la varietà base, , di una submersione quasi-Hermitiana, , è una -varietà e le fibre sono subvarietà superminimali, allora lo spazio totale, , è . Se la varietà base, , è Hermitiana e le fibre sono subvarietà bidimensionali e superminimali, allora lo spazio totale, , è Hermitiano.
Tshikuna-Matamba, T. (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Deszsz, Ryszard (2003)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Vasile Oproiu, Neculai Papaghiuc (2005)
Colloquium Mathematicae
Similarity:
In [11] we have considered a family of almost anti-Hermitian structures (G,J) on the tangent bundle TM of a Riemannian manifold (M,g), where the almost complex structure J is a natural lift of g to TM interchanging the vertical and horizontal distributions VTM and HTM and the metric G is a natural lift of g of Sasaki type, with the property of being anti-Hermitian with respect to J. Next, we have studied the conditions under which (TM,G,J) belongs to one of the eight classes of anti-Hermitian...
Barbara Opozda (1988)
Annales Polonici Mathematici
Similarity: