On the first Chern class of a complex submanifold in an almost Hermitian manifold and the normal connection
Manuel Barros, Florentino G. Santos (1987)
Colloquium Mathematicae
Similarity:
Manuel Barros, Florentino G. Santos (1987)
Colloquium Mathematicae
Similarity:
R. Castro, A. Tarrio (1990)
Annales Polonici Mathematici
Similarity:
Andrew Balas (1987)
Mathematische Zeitschrift
Similarity:
Yoshiyuki Watanabe, Hiroshi Mori (1998)
Archivum Mathematicum
Similarity:
We construct a family of almost quaternionic Hermitian structures from an almost contact metric 3-structure and also do three kinds of quaternionic Kähler structures from a Sasakian 3-structure. In particular we have a generalization of the second main result of Boyer-Galicki-Mann [5].
Bill Watson (2000)
Bollettino dell'Unione Matematica Italiana
Similarity:
Se la varietà base, , di una submersione quasi-Hermitiana, , è una -varietà e le fibre sono subvarietà superminimali, allora lo spazio totale, , è . Se la varietà base, , è Hermitiana e le fibre sono subvarietà bidimensionali e superminimali, allora lo spazio totale, , è Hermitiano.
Tshikuna-Matamba, T. (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Deszsz, Ryszard (2003)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Vasile Oproiu, Neculai Papaghiuc (2005)
Colloquium Mathematicae
Similarity:
In [11] we have considered a family of almost anti-Hermitian structures (G,J) on the tangent bundle TM of a Riemannian manifold (M,g), where the almost complex structure J is a natural lift of g to TM interchanging the vertical and horizontal distributions VTM and HTM and the metric G is a natural lift of g of Sasaki type, with the property of being anti-Hermitian with respect to J. Next, we have studied the conditions under which (TM,G,J) belongs to one of the eight classes of anti-Hermitian...
Barbara Opozda (1988)
Annales Polonici Mathematici
Similarity: