On interpolation polynomials of the Hermite-Fejér type
T. M. Mills (1976)
Colloquium Mathematicae
Similarity:
T. M. Mills (1976)
Colloquium Mathematicae
Similarity:
Zalman Rubinstein (1984)
Annales Polonici Mathematici
Similarity:
Bokhari, M.A., Sharma, A. (1992)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Newman, D.J., Rubel, L.A. (1979)
International Journal of Mathematics and Mathematical Sciences
Similarity:
T.R. Hopkins, P.R. Graves-Morris (1980/81)
Numerische Mathematik
Similarity:
Stahl, Herbert (1996)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Similarity:
Marc Van Barel, Adhemar Bultheel (1992)
Numerische Mathematik
Similarity:
J. L. Walsh (1962)
Annales Polonici Mathematici
Similarity:
G. Claessens (1977/1978)
Numerische Mathematik
Similarity:
S. Paszkowski (1969)
Applicationes Mathematicae
Similarity:
K. Reczek (1992)
Monatshefte für Mathematik
Similarity:
Phung Van Manh (2015)
Annales Polonici Mathematici
Similarity:
We give a new poised bivariate Hermite scheme and a formula for the interpolation polynomial. We show that the Hermite interpolation polynomial is the limit of bivariate Lagrange interpolation polynomials at Bos configurations on circles.
A. Goncharov (2005)
Banach Center Publications
Similarity:
We suggest a modification of the Pawłucki and Pleśniak method to construct a continuous linear extension operator by means of interpolation polynomials. As an illustration we present explicitly the extension operator for the space of Whitney functions given on the Cantor ternary set.
Branga, Adrian (1998)
General Mathematics
Similarity: