Displaying similar documents to “On prime ideals with prescribed values of characters of prime degree”

On associated and attached prime ideals of certain modules

K. Divaani-Aazar (2001)

Colloquium Mathematicae

Similarity:

Primary and secondary functors have been introduced in [2] and applied to extend some results concerning asymptotic prime ideals. In this paper, the theory of primary and secondary functors is developed and examples of non-exact primary and non-exact secondary functors are presented. Also, as an application, the sets of associated and of attached prime ideals of certain modules are determined.

Chebotarev sets

Hershy Kisilevsky, Michael O. Rubinstein (2015)

Acta Arithmetica

Similarity:

We consider the problem of determining whether a set of primes, or, more generally, prime ideals in a number field, can be realized as a finite union of residue classes, or of Frobenius conjugacy classes. We give necessary conditions for a set to be realized in this manner, and show that the subset of primes consisting of every other prime cannot be expressed in this way, even if we allow a finite number of exceptions.

On the Properties of the Möbius Function

Magdalena Jastrzebska, Adam Grabowski (2006)

Formalized Mathematics

Similarity:

We formalized some basic properties of the Möbius function which is defined classically as [...] as e.g., its multiplicativity. To enable smooth reasoning about the sum of this number-theoretic function, we introduced an underlying many-sorted set indexed by the set of natural numbers. Its elements are just values of the Möbius function.The second part of the paper is devoted to the notion of the radical of number, i.e. the product of its all prime factors.The formalization (which is...

Pocklington's Theorem and Bertrand's Postulate

Marco Riccardi (2006)

Formalized Mathematics

Similarity:

The first four sections of this article include some auxiliary theorems related to number and finite sequence of numbers, in particular a primality test, the Pocklington's theorem (see [19]). The last section presents the formalization of Bertrand's postulate closely following the book [1], pp. 7-9.