A property of quasi-complements
Robert H. Lohman (1974)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Robert H. Lohman (1974)
Colloquium Mathematicae
Similarity:
Cabiria Andreian Cazacu (1981)
Annales Polonici Mathematici
Similarity:
Andrzej Kadlof, Nikola Koceić Bilan, Nikica Uglešić (2007)
Fundamenta Mathematicae
Similarity:
Borsuk's quasi-equivalence relation on the class of all compacta is considered. The open problem concerning transitivity of this relation is solved in the negative. Namely, three continua X, Y and Z lying in ℝ³ are constructed such that X is quasi-equivalent to Y and Y is quasi-equivalent to Z, while X is not quasi-equivalent to Z.
T. K. Pal, M. Maiti (1977)
Matematički Vesnik
Similarity:
B. K. Ray (1978)
Matematički Vesnik
Similarity:
J. Achari (1978)
Matematički Vesnik
Similarity:
Olivier Olela Otafudu, Zechariah Mushaandja (2017)
Topological Algebra and its Applications
Similarity:
We show that the image of a q-hyperconvex quasi-metric space under a retraction is q-hyperconvex. Furthermore, we establish that quasi-tightness and quasi-essentiality of an extension of a T0-quasi-metric space are equivalent.
Roman Sikorski (1974)
Fundamenta Mathematicae
Similarity:
J. Achari (1977)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Pablo F. Meilán, Mariano Creus, Mario Garavaglia (2000)
Visual Mathematics
Similarity:
José M. Rodríguez Sanjurjo (1980)
Collectanea Mathematica
Similarity:
Let X, Y be two compacta with Sh(X) = Sh (Y). Then, the spaces of components of X, Y are homeomorphic. This does not happen, in general, when X, Y are quasi-equivalent. In this paper we give a sufficient condition for the existence of a homeomorphism between the spaces of components of two quasi-equivalent compacta X, Y which maps each component in a quasi-equivalent component.
D. J. Grubb (2008)
Fundamenta Mathematicae
Similarity:
A quasi-linear map from a continuous function space C(X) is one which is linear on each singly generated subalgebra. We show that the collection of quasi-linear functionals has a Banach space pre-dual with a natural order. We then investigate quasi-linear maps between two continuous function spaces, classifying them in terms of generalized image transformations.
Amouch, M. (2009)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 47B47, 47B10, 47A30. In this note, we characterize quasi-normality of two-sided multiplication, restricted to a norm ideal and we extend this result, to an important class which contains all quasi-normal operators. Also we give some applications of this result.