The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Compacta which are quasi-homeomorphic with a disk”

Borsuk's quasi-equivalence is not transitive

Andrzej Kadlof, Nikola Koceić Bilan, Nikica Uglešić (2007)

Fundamenta Mathematicae

Similarity:

Borsuk's quasi-equivalence relation on the class of all compacta is considered. The open problem concerning transitivity of this relation is solved in the negative. Namely, three continua X, Y and Z lying in ℝ³ are constructed such that X is quasi-equivalent to Y and Y is quasi-equivalent to Z, while X is not quasi-equivalent to Z.

Versatile asymmetrical tight extensions

Olivier Olela Otafudu, Zechariah Mushaandja (2017)

Topological Algebra and its Applications

Similarity:

We show that the image of a q-hyperconvex quasi-metric space under a retraction is q-hyperconvex. Furthermore, we establish that quasi-tightness and quasi-essentiality of an extension of a T0-quasi-metric space are equivalent.

Quasi-equivalence of compacta and spaces of components.

José M. Rodríguez Sanjurjo (1980)

Collectanea Mathematica

Similarity:

Let X, Y be two compacta with Sh(X) = Sh (Y). Then, the spaces of components of X, Y are homeomorphic. This does not happen, in general, when X, Y are quasi-equivalent. In this paper we give a sufficient condition for the existence of a homeomorphism between the spaces of components of two quasi-equivalent compacta X, Y which maps each component in a quasi-equivalent component.

Quasi-linear maps

D. J. Grubb (2008)

Fundamenta Mathematicae

Similarity:

A quasi-linear map from a continuous function space C(X) is one which is linear on each singly generated subalgebra. We show that the collection of quasi-linear functionals has a Banach space pre-dual with a natural order. We then investigate quasi-linear maps between two continuous function spaces, classifying them in terms of generalized image transformations.

On Quasi-Normality of Two-Sided Multiplication

Amouch, M. (2009)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 47B47, 47B10, 47A30. In this note, we characterize quasi-normality of two-sided multiplication, restricted to a norm ideal and we extend this result, to an important class which contains all quasi-normal operators. Also we give some applications of this result.