Embedding theorems for a class of functions.
Laković, B. (1986)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Laković, B. (1986)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
L. I. Sennott (1979)
Colloquium Mathematicae
Similarity:
Marica D. Prešić (1980)
Publications de l'Institut Mathématique
Similarity:
Klaus Kaiser (1973)
Colloquium Mathematicae
Similarity:
Milan Grulović (1995)
Matematički Vesnik
Similarity:
A. Pełczyński, K. Senator (1986)
Studia Mathematica
Similarity:
Ronald Brown, Sidney A. Morris (1978)
Colloquium Mathematicae
Similarity:
Grzegorz Plebanek (2013)
Studia Mathematica
Similarity:
We investigate isomorphic embeddings T: C(K) → C(L) between Banach spaces of continuous functions. We show that if such an embedding T is a positive operator then K is the image of L under an upper semicontinuous set-function having finite values. Moreover we show that K has a π-base of sets whose closures are continuous images of compact subspaces of L. Our results imply in particular that if C(K) can be positively embedded into C(L) then some topological properties of L, such...
De Bruyn, Bart (2007)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Alicja Gąsiorowska (2011)
Banach Center Publications
Similarity:
We prove asymptotic formulas for the behavior of Gelfand and Kolmogorov numbers of Sobolev embeddings between Besov and Triebel-Lizorkin spaces of radial distributions. Our method works also for Weyl numbers.
Francesca Lascialfari, David Pardo (2002)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: