Boolean representation trough propositional calculus
Leon Henkin (1955)
Fundamenta Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Leon Henkin (1955)
Fundamenta Mathematicae
Similarity:
W. Luxemburg (1964)
Fundamenta Mathematicae
Similarity:
Jean-Francis Michon, Jean-Baptiste Yunès, Pierre Valarcher (2010)
RAIRO - Theoretical Informatics and Applications
Similarity:
We investigate the structure of “worst-case” quasi reduced ordered decision diagrams and Boolean functions whose truth tables are associated to: we suggest different ways to count and enumerate them. We, then, introduce a notion of complexity which leads to the concept of “hard” Boolean functions as functions whose QROBDD are “worst-case” ones. So we exhibit the relation between hard functions and the Storage Access function (also known as Multiplexer).
J. Bell (1988)
Fundamenta Mathematicae
Similarity:
L. Szczerba (1973)
Fundamenta Mathematicae
Similarity:
Sakaé Fuchino, Assaf Rinot (2011)
Fundamenta Mathematicae
Similarity:
We prove that the Fodor-type Reflection Principle (FRP) is equivalent to the assertion that any Boolean algebra is openly generated if and only if it is ℵ₂-projective. Previously it was known that this characterization of openly generated Boolean algebras follows from Axiom R. Since FRP is preserved by c.c.c. generic extension, we conclude in particular that this characterization is consistent with any set-theoretic assertion forcable by a c.c.c. poset starting from a model of FRP. A...
Sergiu Rudeanu (1998)
Mathware and Soft Computing
Similarity:
An abstract form of modus ponens in a Boolean algebra was suggested in [1]. In this paper we use the general theory of Boolean equations (see e.g. [2]) to obtain a further generalization. For a similar research on Boolean deduction theorems see [3].
Roman Sikorski (1963)
Colloquium Mathematicae
Similarity:
H. Werner (1982)
Banach Center Publications
Similarity:
Miroslav Repický (2015)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We present a proof of the Boolean Prime Ideal Theorem in a transitive model of ZF in which the Axiom of Choice does not hold. We omit the argument based on the full Halpern-Läuchli partition theorem and instead we reduce the proof to its elementary case.