Continua whose connected subsets are arcwise connected
E. D. Tymchatyn (1972)
Colloquium Mathematicae
Similarity:
E. D. Tymchatyn (1972)
Colloquium Mathematicae
Similarity:
J. Krasinkiewicz, Piotr Minc (1979)
Fundamenta Mathematicae
Similarity:
Lee Mohler (1984)
Colloquium Mathematicae
Similarity:
Mirosław Sobolewski (2015)
Fundamenta Mathematicae
Similarity:
A continuum is a metric compact connected space. A continuum is chainable if it is an inverse limit of arcs. A continuum is weakly chainable if it is a continuous image of a chainable continuum. A space X is uniquely arcwise connected if any two points in X are the endpoints of a unique arc in X. D. P. Bellamy asked whether if X is a weakly chainable uniquely arcwise connected continuum then every mapping f: X → X has a fixed point. We give a counterexample.
J. Grispolakis, E. D. Tymchatyn (1979)
Colloquium Mathematicae
Similarity:
Roman Mańka (1987)
Colloquium Mathematicae
Similarity:
Roman Mańka (1987)
Colloquium Mathematicae
Similarity:
Janusz Charatonik (1964)
Fundamenta Mathematicae
Similarity:
Philip Bacon (1970)
Colloquium Mathematicae
Similarity:
E. Tymchatyn (1975)
Fundamenta Mathematicae
Similarity:
P. Swingle (1931)
Fundamenta Mathematicae
Similarity:
Donald Bennett (1974)
Fundamenta Mathematicae
Similarity:
T. Maćkowiak, E. D. Tymchatyn (1987)
Colloquium Mathematicae
Similarity:
Mirosława Reńska (2011)
Colloquium Mathematicae
Similarity:
We show that a metrizable continuum X is locally connected if and only if every partition in the cylinder over X between the bottom and the top of the cylinder contains a connected partition between these sets. J. Krasinkiewicz asked whether for every metrizable continuum X there exists a partiton L between the top and the bottom of the cylinder X × I such that L is a hereditarily indecomposable continuum. We answer this question in the negative. We also present a...
Charatonik, Janusz J., Spyrou, Panayotis (1994)
Mathematica Pannonica
Similarity:
W. Kuperberg, A. Lelek (1976)
Fundamenta Mathematicae
Similarity: