Displaying similar documents to “Probability on Finite and Discrete Set and Uniform Distribution”

Random split of the interval [0,1]

B. Kopociński (2004)

Applicationes Mathematicae

Similarity:

We define two splitting procedures of the interval [0,1], one using uniformly distributed points on the chosen piece and the other splitting a piece in half. We also define two procedures for choosing the piece to be split; one chooses a piece with a probability proportional to its length and the other chooses each piece with equal probability. We analyse the probability distribution of the lengths of the pieces arising from these procedures.

Posterior Probability on Finite Set

Hiroyuki Okazaki (2012)

Formalized Mathematics

Similarity:

In [14] we formalized probability and probability distribution on a finite sample space. In this article first we propose a formalization of the class of finite sample spaces whose element’s probability distributions are equivalent with each other. Next, we formalize the probability measure of the class of sample spaces we have formalized above. Finally, we formalize the sampling and posterior probability.

On the central limit theorem on IFS-events.

Jozefina Petrovicová, Riecan Beloslav (2005)

Mathware and Soft Computing

Similarity:

A probability theory on IFS-events has been constructed in [3], and axiomatically characterized in [4]. Here using a general system of axioms it is shown that any probability on IFS-events can be decomposed onto two probabilities on a Lukasiewicz tribe, hence some known results from [5], [6] can be used also for IFS-sets. As an application of the approach a variant of Central limit theorem is presented.

Random Variables and Product of Probability Spaces

Hiroyuki Okazaki, Yasunari Shidama (2013)

Formalized Mathematics

Similarity:

We have been working on the formalization of the probability and the randomness. In [15] and [16], we formalized some theorems concerning the real-valued random variables and the product of two probability spaces. In this article, we present the generalized formalization of [15] and [16]. First, we formalize the random variables of arbitrary set and prove the equivalence between random variable on Σ, Borel sets and a real-valued random variable on Σ. Next, we formalize the product of...