Displaying similar documents to “Some Properties of Line and Column Operations on Matrices”

Laplace Expansion

Karol Pak, Andrzej Trybulec (2007)

Formalized Mathematics

Similarity:

In the article the formula for Laplace expansion is proved.

Basic Properties of the Rank of Matrices over a Field

Karol Pąk (2007)

Formalized Mathematics

Similarity:

In this paper I present selected properties of triangular matrices and basic properties of the rank of matrices over a field.I define a submatrix as a matrix formed by selecting certain rows and columns from a bigger matrix. That is in my considerations, as an array, it is cut down to those entries constrained by row and column. Then I introduce the concept of the rank of a m x n matrix A by the condition: A has the rank r if and only if, there is a r x r submatrix of A with a non-zero...

Determinant and Inverse of Matrices of Real Elements

Nobuyuki Tamura, Yatsuka Nakamura (2007)

Formalized Mathematics

Similarity:

In this paper the classic theory of matrices of real elements (see e.g. [12], [13]) is developed. We prove selected equations that have been proved previously for matrices of field elements. Similarly, we introduce in this special context the determinant of a matrix, the identity and zero matrices, and the inverse matrix. The new concept discussed in the case of matrices of real numbers is the property of matrices as operators acting on finite sequences of real numbers from both sides....

A Theory of Matrices of Real Elements

Yatsuka Nakamura, Nobuyuki Tamura, Wenpai Chang (2006)

Formalized Mathematics

Similarity:

Here, the concept of matrix of real elements is introduced. This is defined as a special case of the general concept of matrix of a field. For such a real matrix, the notions of addition, subtraction, scalar product are defined. For any real finite sequences, two transformations to matrices are introduced. One of the matrices is of width 1, and the other is of length 1. By such transformations, two products of a matrix and a finite sequence are defined. Also the linearity of such product...

Some Special Matrices of Real Elements and Their Properties

Xiquan Liang, Fuguo Ge, Xiaopeng Yue (2006)

Formalized Mathematics

Similarity:

This article describes definitions of positive matrix, negative matrix, nonpositive matrix, nonnegative matrix, nonzero matrix, module matrix of real elements and their main properties, and we also give the basic inequalities in matrices of real elements.

Intervals of certain classes of Z-matrices

M. Rajesh Kannan, K.C. Sivakumar (2014)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let A and B be M-matrices satisfying A ≤ B and J = [A,B] be the set of all matrices C such that A ≤ C ≤ B, where the order is component wise. It is rather well known that if A is an M-matrix and B is an invertible M-matrix and A ≤ B, then aA + bB is an invertible M-matrix for all a,b > 0. In this article, we present an elementary proof of a stronger version of this result and study corresponding results for certain other classes as well.

Explicit formulas for the constituent matrices. Application to the matrix functions

R. Ben Taher, M. Rachidi (2015)

Special Matrices

Similarity:

We present a constructive procedure for establishing explicit formulas of the constituents matrices. Our approach is based on the tools and techniques from the theory of generalized Fibonacci sequences. Some connections with other results are supplied. Furthermore,we manage to provide tractable expressions for the matrix functions, and for illustration purposes we establish compact formulas for both the matrix logarithm and the matrix pth root. Some examples are also provided. ...

The problem of kings.

Larsen, Michael (1995)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Determinant of Some Matrices of Field Elements

Yatsuka Nakamura (2006)

Formalized Mathematics

Similarity:

Here, we present determinants of some square matrices of field elements. First, the determinat of 2 * 2 matrix is shown. Secondly, the determinants of zero matrix and unit matrix are shown, which are equal to 0 in the field and 1 in the field respectively. Thirdly, the determinant of diagonal matrix is shown, which is a product of all diagonal elements of the matrix. At the end, we prove that the determinant of a matrix is the same as the determinant of its transpose.