On the symmetric derivative
P. Kostyrko (1972)
Colloquium Mathematicae
Similarity:
P. Kostyrko (1972)
Colloquium Mathematicae
Similarity:
W. Roter (1974)
Colloquium Mathematicae
Similarity:
W. Roter (1972)
Colloquium Mathematicae
Similarity:
N. K. Kundu (1974)
Annales Polonici Mathematici
Similarity:
Jiří Matoušek (1989)
Colloquium Mathematicae
Similarity:
Jaskuła, Janusz, Szkopińska, Bożena (2015-12-15T14:49:03Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Libicka, Inga, Łazarow, Ewa, Szkopińska, Bożena (2015-12-08T09:08:27Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Dornstetter, J.L., Krob, D., Thibon, J.Y., Vassilieva, E.A. (2002)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
Similarity:
Boris Bukh (2008)
Acta Arithmetica
Similarity:
N. K. Kundu (1973)
Colloquium Mathematicae
Similarity:
Gang Yu (2005)
Colloquium Mathematicae
Similarity:
A positive integer n is called E-symmetric if there exists a positive integer m such that |m-n| = (ϕ(m),ϕ(n)), and n is called E-asymmetric if it is not E-symmetric. We show that there are infinitely many E-symmetric and E-asymmetric primes.
Michael J. Evans (1974)
Colloquium Mathematicae
Similarity:
Popa, Sorin (1999)
Documenta Mathematica
Similarity:
Jan Gregorovič, Lenka Zalabová (2015)
Archivum Mathematicum
Similarity:
In this article, we summarize the results on symmetric conformal geometries. We review the results following from the general theory of symmetric parabolic geometries and prove several new results for symmetric conformal geometries. In particular, we show that each symmetric conformal geometry is either locally flat or covered by a pseudo-Riemannian symmetric space, where the covering is a conformal map. We construct examples of locally flat symmetric conformal geometries that are not...