Lie groups in varieties of topological groups
Sidney A. Morris (1974)
Colloquium Mathematicae
Similarity:
Sidney A. Morris (1974)
Colloquium Mathematicae
Similarity:
Karl Heinrich Hofmann, W.A.F. Ruppert (1994)
Mathematische Annalen
Similarity:
John T. Baldwin, Joel Berman (1976)
Colloquium Mathematicae
Similarity:
Damaris Schindler (2014)
Journal de Théorie des Nombres de Bordeaux
Similarity:
We count integer points on varieties given by bihomogeneous equations using the Hardy-Littlewood method. The main novelty lies in using the structure of bihomogeneous equations to obtain asymptotics in generically fewer variables than would be necessary in using the standard approach for homogeneous varieties. Also, we consider counting functions where not all the variables have to lie in intervals of the same size, which arises as a natural question in the setting of bihomogeneous varieties. ...
I.D. MacDonald (1961)
Mathematische Zeitschrift
Similarity:
I.D. MacDonald (1962)
Mathematische Zeitschrift
Similarity:
Roger M. Bryant (1971)
Mathematische Zeitschrift
Similarity:
B. Bajorska, O. Macedońska (2001)
Colloquium Mathematicae
Similarity:
Let G* denote a nonprincipal ultrapower of a group G. In 1986 M.~Boffa posed a question equivalent to the following one: if G does not satisfy a positive law, does G* contain a free nonabelian subsemigroup? We give the affirmative answer to this question in the large class of groups containing all residually finite and all soluble groups, in fact, all groups considered in traditional textbooks on group theory.
M.F. Newman, Peter M. Neumann (1967)
Mathematische Zeitschrift
Similarity:
James Wiegold, Peter M. Neumann (1964)
Mathematische Zeitschrift
Similarity:
Sidney A. Morris (1972)
Colloquium Mathematicae
Similarity:
E.M. Friedlander, B.J. Parshall (1986)
Inventiones mathematicae
Similarity:
Frank Levin (1968)
Mathematische Zeitschrift
Similarity:
Tom Weston (2003)
Acta Arithmetica
Similarity:
V. Lakshmibai (1990)
Banach Center Publications
Similarity: