The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Characterizations of m-connected graphs”

Isomorphic components of Kronecker product of bipartite graphs

Pranava K. Jha, Sandi Klavžar, Blaž Zmazek (1997)

Discussiones Mathematicae Graph Theory

Similarity:

Weichsel (Proc. Amer. Math. Soc. 13 (1962) 47-52) proved that the Kronecker product of two connected bipartite graphs consists of two connected components. A condition on the factor graphs is presented which ensures that such components are isomorphic. It is demonstrated that several familiar and easily constructible graphs are amenable to that condition. A partial converse is proved for the above condition and it is conjectured that the converse is true in general.

n-Arc connected spaces

Benjamin Espinoza, Paul Gartside, Ana Mamatelashvili (2013)

Colloquium Mathematicae

Similarity:

A space is n-arc connected (n-ac) if any family of no more than n-points are contained in an arc. For graphs the following are equivalent: (i) 7-ac, (ii) n-ac for all n, (iii) continuous injective image of a closed subinterval of the real line, and (iv) one of a finite family of graphs. General continua that are ℵ₀-ac are characterized. The complexity of characterizing n-ac graphs for n = 2,3,4,5 is determined to be strictly higher than that of the stated characterization of 7-ac graphs. ...

Relating 2-Rainbow Domination To Roman Domination

José D. Alvarado, Simone Dantas, Dieter Rautenbach (2017)

Discussiones Mathematicae Graph Theory

Similarity:

For a graph G, let R(G) and yr2(G) denote the Roman domination number of G and the 2-rainbow domination number of G, respectively. It is known that yr2(G) ≤ R(G) ≤ 3/2yr2(G). Fujita and Furuya [Difference between 2-rainbow domination and Roman domination in graphs, Discrete Appl. Math. 161 (2013) 806-812] present some kind of characterization of the graphs G for which R(G) − yr2(G) = k for some integer k. Unfortunately, their result does not lead to an algorithm that allows to recognize...