The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the functional equation f ( x ) + i = 1 n g i ( y i ) = h ( T ( x , y 1 , y 2 , . . . , y n ) )

Solutions for the p-order Feigenbaum’s functional equation h ( g ( x ) ) = g p ( h ( x ) )

Min Zhang, Jianguo Si (2014)

Annales Polonici Mathematici

Similarity:

This work deals with Feigenbaum’s functional equation ⎧ h ( g ( x ) ) = g p ( h ( x ) ) , ⎨ ⎩ g(0) = 1, -1 ≤ g(x) ≤ 1, x∈[-1,1] where p ≥ 2 is an integer, g p is the p-fold iteration of g, and h is a strictly monotone odd continuous function on [-1,1] with h(0) = 0 and |h(x)| < |x| (x ∈ [-1,1], x ≠ 0). Using a constructive method, we discuss the existence of continuous unimodal even solutions of the above equation.

On Probability Distribution Solutions of a Functional Equation

Janusz Morawiec, Ludwig Reich (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let 0 < β < α < 1 and let p ∈ (0,1). We consider the functional equation φ(x) = pφ (x-β)/(1-β) + (1-p)φ(minx/α, (x(α-β)+β(1-α))/α(1-β)) and its solutions in two classes of functions, namely ℐ = φ: ℝ → ℝ|φ is increasing, φ | ( - , 0 ] = 0 , φ | [ 1 , ) = 1 , = φ: ℝ → ℝ|φ is continuous, φ | ( - , 0 ] = 0 , φ | [ 1 , ) = 1 . We prove that the above equation has at most one solution in and that for some parameters α,β and p such a solution exists, and for some it does not. We also determine all solutions of the equation in ℐ and we show the...

On C * -spaces

P. Srivastava, K. K. Azad (1981)

Matematički Vesnik

Similarity:

A Marchaud type inequality

Jorge Bustamante (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We present a new Marchaud type inequality in 𝕃 p spaces.