Stability of Reducible Quadrature Methods for Volterra Integral Equations of the Second Kind.
Z. Jackiewicz, V.L. Bakke (1985)
Numerische Mathematik
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Z. Jackiewicz, V.L. Bakke (1985)
Numerische Mathematik
Similarity:
G. Karakostas (1987)
Colloquium Mathematicae
Similarity:
Araghi, Mohammad Ali Fariborzi, Kasmaei, Hamed Daei (2008)
International Journal of Open Problems in Computer Science and Mathematics. IJOPCM
Similarity:
W. Mydlarczyk (1991)
Annales Polonici Mathematici
Similarity:
Bogdan Rzepecki (1976)
Annales Polonici Mathematici
Similarity:
R. Smarzewski (1976)
Applicationes Mathematicae
Similarity:
K. Orlov, M. Stojanović (1974)
Matematički Vesnik
Similarity:
P.P.B. Eggermont (1992)
Numerische Mathematik
Similarity:
W. Okrasinski (1993)
Extracta Mathematicae
Similarity:
Jesús M. Fernández Castillo, W. Okrasinski (1991)
Extracta Mathematicae
Similarity:
In mathematical models of some physical phenomena a new class of nonlinear Volterra equations appears ([5],[6]). The equations belonging to this class have u = 0 as a solution (trivial solution), but with respect to their physical meaning, nonnegative nontrivial solutions are of prime importance.
Shaw, R.E., Garey, L.E. (1997)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Mydlarczyk, W. (2001)
Journal of Inequalities and Applications [electronic only]
Similarity:
Sever Dragomir (2001)
Kragujevac Journal of Mathematics
Similarity: