Stability of Reducible Quadrature Methods for Volterra Integral Equations of the Second Kind.
Z. Jackiewicz, V.L. Bakke (1985)
Numerische Mathematik
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Z. Jackiewicz, V.L. Bakke (1985)
Numerische Mathematik
Similarity:
G. Karakostas (1987)
Colloquium Mathematicae
Similarity:
Araghi, Mohammad Ali Fariborzi, Kasmaei, Hamed Daei (2008)
International Journal of Open Problems in Computer Science and Mathematics. IJOPCM
Similarity:
W. Mydlarczyk (1991)
Annales Polonici Mathematici
Similarity:
Bogdan Rzepecki (1976)
Annales Polonici Mathematici
Similarity:
R. Smarzewski (1976)
Applicationes Mathematicae
Similarity:
K. Orlov, M. Stojanović (1974)
Matematički Vesnik
Similarity:
P.P.B. Eggermont (1992)
Numerische Mathematik
Similarity:
W. Okrasinski (1993)
Extracta Mathematicae
Similarity:
Jesús M. Fernández Castillo, W. Okrasinski (1991)
Extracta Mathematicae
Similarity:
In mathematical models of some physical phenomena a new class of nonlinear Volterra equations appears ([5],[6]). The equations belonging to this class have u = 0 as a solution (trivial solution), but with respect to their physical meaning, nonnegative nontrivial solutions are of prime importance.
Shaw, R.E., Garey, L.E. (1997)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Mydlarczyk, W. (2001)
Journal of Inequalities and Applications [electronic only]
Similarity:
Sever Dragomir (2001)
Kragujevac Journal of Mathematics
Similarity: