A linear upper bound in zero-sum Ramsey theory.
Caro, Yair (1994)
International Journal of Mathematics and Mathematical Sciences
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Caro, Yair (1994)
International Journal of Mathematics and Mathematical Sciences
Similarity:
P. Francis, S. Francis Raj (2016)
Discussiones Mathematicae Graph Theory
Similarity:
A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. In this paper, we obtain bounds for the b- chromatic number of induced subgraphs in terms of the b-chromatic number of the original graph. This turns out to be...
Xu, Xiaodong, Xie, Zheng, Exoo, Geoffrey, Radziszowski, Stanisław P. (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Hajo Broersma, Bert Marchal, Daniel Paulusma, A.N.M. Salman (2009)
Discussiones Mathematicae Graph Theory
Similarity:
We continue the study on backbone colorings, a variation on classical vertex colorings that was introduced at WG2003. Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring for G and H is a proper vertex coloring V→ {1,2,...} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The algorithmic and combinatorial properties of backbone colorings have been studied for various types of backbones in a number of papers....
Albertson, Michael O., Chappell, Glenn G., Kierstead, H.A., Kündgen, André, Ramamurthi, Radhika (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Kostochka, Alexandr (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Tomáš Vetrík (2012)
Discussiones Mathematicae Graph Theory
Similarity:
The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r-1 partite classes of order two.
Mubayi, Dhruv (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Csilla Bujtás, Zsolt Tuza (2016)
Discussiones Mathematicae Graph Theory
Similarity:
A K3-WORM coloring of a graph G is an assignment of colors to the vertices in such a way that the vertices of each K3-subgraph of G get precisely two colors. We study graphs G which admit at least one such coloring. We disprove a conjecture of Goddard et al. [Congr. Numer. 219 (2014) 161-173] by proving that for every integer k ≥ 3 there exists a K3-WORM-colorable graph in which the minimum number of colors is exactly k. There also exist K3-WORM colorable graphs which have a K3-WORM...
Payne, Michael S. (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Oleg V. Borodin, Anna O. Ivanova (2013)
Discussiones Mathematicae Graph Theory
Similarity:
We prove that every planar graph with maximum degree ∆ is strong edge (2∆−1)-colorable if its girth is at least 40 [...] +1. The bound 2∆−1 is reached at any graph that has two adjacent vertices of degree ∆.
Xu, Xiaodong, Radziszowski, Stanislaw P. (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Gary Chartrand, Futaba Okamoto, Craig W. Rasmussen, Ping Zhang (2009)
Discussiones Mathematicae Graph Theory
Similarity:
For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs...
Simon Špacapan, Aleksandra Tepeh Horvat (2008)
Discussiones Mathematicae Graph Theory
Similarity:
A coloring of a graph G is an acyclic coloring if the union of any two color classes induces a forest. It is proved that the acyclic chromatic number of direct product of two trees T₁ and T₂ equals min{Δ(T₁) + 1, Δ(T₂) + 1}. We also prove that the acyclic chromatic number of direct product of two complete graphs Kₘ and Kₙ is mn-m-2, where m ≥ n ≥ 4. Several bounds for the acyclic chromatic number of direct products are given and in connection to this some questions are raised. ...
Schauz, Uwe (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity: