Continuously removable sets for quasiconformal mappings.
Tyutyuev, A.V., Shlyk, V.A. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Tyutyuev, A.V., Shlyk, V.A. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
V. P. Mićić (1972)
Matematički Vesnik
Similarity:
Kovalev, Leonid V. (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Reich, Edgar (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
González, María J., Nicolau, Artur (1998)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Gutlyanskij, V.Ya., Ryazanov, V.I. (1996)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Matti Vuorinen (1990)
Mathematische Zeitschrift
Similarity:
Kühnau, Reiner (1996)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Pekka Koskela (1994)
Revista Matemática Iberoamericana
Similarity:
We establish an inverse Sobolev lemma for quasiconformal mappings and extend a weaker version of the Sobolev lemma for quasiconformal mappings of the unit ball of R to the full range 0 < p < n. As an application we obtain sharp integrability theorems for the derivative of a quasiconformal mapping of the unit ball of R in terms of the growth of the mapping.
J. Ławrynowicz (1968)
Annales Polonici Mathematici
Similarity:
Xinzhong Huang (2014)
Annales Polonici Mathematici
Similarity:
We give a Hölder type estimate for normalized ρ-quasisymmetric functions, improving some results of J. Zając.
Luděk Kleprlík (2014)
Open Mathematics
Similarity:
Let Ω ⊂ ℝn be an open set and X(Ω) be any rearrangement invariant function space close to L q(Ω), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u ↦ u ℴ f from W 1 X to W 1 X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.
Mayer, Volker (2000)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
A. Pierzchalski (1987)
Banach Center Publications
Similarity: