Displaying similar documents to “Two-sided approximations of inverses, square roots and Cholesky factors”

A convergence analysis of Newton-like methods for singular equations using outer or generalized inverses

Ioannis K. Argyros (2005)

Applicationes Mathematicae

Similarity:

The Newton-Kantorovich approach and the majorant principle are used to provide new local and semilocal convergence results for Newton-like methods using outer or generalized inverses in a Banach space setting. Using the same conditions as before, we provide more precise information on the location of the solution and on the error bounds on the distances involved. Moreover since our Newton-Kantorovich-type hypothesis is weaker than before, we can cover cases where the original Newton-Kantorovich...

A new approach for finding weaker conditions for the convergence of Newton's method

Ioannis K. Argyros (2005)

Applicationes Mathematicae

Similarity:

The Newton-Kantorovich hypothesis (15) has been used for a long time as a sufficient condition for convergence of Newton's method to a locally unique solution of a nonlinear equation in a Banach space setting. Recently in [3], [4] we showed that this hypothesis can always be replaced by a condition weaker in general (see (18), (19) or (20)) whose verification requires the same computational cost. Moreover, finer error bounds and at least as precise information on the location of the...

Fermat’s Little Theorem via Divisibility of Newton’s Binomial

Rafał Ziobro (2015)

Formalized Mathematics

Similarity:

Solving equations in integers is an important part of the number theory [29]. In many cases it can be conducted by the factorization of equation’s elements, such as the Newton’s binomial. The article introduces several simple formulas, which may facilitate this process. Some of them are taken from relevant books [28], [14]. In the second section of the article, Fermat’s Little Theorem is proved in a classical way, on the basis of divisibility of Newton’s binomial. Although slightly redundant...