On colorings avoiding a rainbow cycle and a fixed monochromatic subgraph.
Axenovich, Maria, Choi, JiHyeok (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Axenovich, Maria, Choi, JiHyeok (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Albertson, Michael O., Chappell, Glenn G., Kierstead, H.A., Kündgen, André, Ramamurthi, Radhika (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Dzido, Tomasz, Nowik, Andrzej, Szuca, Piotr (2005)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Fujita, Shinya, Kaneko, Atsushi, Schiermeyer, Ingo, Suzuki, Kazuhiro (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Mubayi, Dhruv (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Ward, C., Szabó, S. (1994)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
LeSaulnier, Timothy D., Stocker, Christopher, Wenger, Paul S., West, Douglas B. (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Evelyne Flandrin, Hao Li, Antoni Marczyk, Jean-François Saclé, Mariusz Woźniak (2017)
Discussiones Mathematicae Graph Theory
Similarity:
A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . . , k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.
Gary Chartrand, Futaba Okamoto, Craig W. Rasmussen, Ping Zhang (2009)
Discussiones Mathematicae Graph Theory
Similarity:
For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs...
J. Czap, S. Jendrol’, J. Valiska (2017)
Discussiones Mathematicae Graph Theory
Similarity:
Given three planar graphs F,H, and G, an (F,H)-WORM coloring of G is a vertex coloring such that no subgraph isomorphic to F is rainbow and no subgraph isomorphic to H is monochromatic. If G has at least one (F,H)-WORM coloring, then W−F,H(G) denotes the minimum number of colors in an (F,H)-WORM coloring of G. We show that (a) W−F,H(G) ≤ 2 if |V (F)| ≥ 3 and H contains a cycle, (b) W−F,H(G) ≤ 3 if |V (F)| ≥ 4 and H is a forest with Δ (H) ≥ 3, (c) W−F,H(G) ≤ 4 if |V (F)| ≥ 5 and H is...
Oleg V. Borodin, Anna O. Ivanova (2013)
Discussiones Mathematicae Graph Theory
Similarity:
We prove that every planar graph with maximum degree ∆ is strong edge (2∆−1)-colorable if its girth is at least 40 [...] +1. The bound 2∆−1 is reached at any graph that has two adjacent vertices of degree ∆.
Xu, Xiaodong, Radziszowski, Stanislaw P. (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Elliot Krop, Irina Krop (2013)
Discussiones Mathematicae Graph Theory
Similarity:
Let f(n, p, q) be the minimum number of colors necessary to color the edges of Kn so that every Kp is at least q-colored. We improve current bounds on these nearly “anti-Ramsey” numbers, first studied by Erdös and Gyárfás. We show that [...] , slightly improving the bound of Axenovich. We make small improvements on bounds of Erdös and Gyárfás by showing [...] and for all even n ≢ 1(mod 3), f(n, 4, 5) ≤ n− 1. For a complete bipartite graph G= Kn,n, we show an n-color construction to color...
Ghebleh, Mohammad, Kral', Daniel, Norine, Serguei, Thomas, Robin (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity: