The Golden Section, Fibonacci Series and New Hyperbolic Models of Nature
Alexey Stakhov, Boris Rozin (2006)
Visual Mathematics
Similarity:
Alexey Stakhov, Boris Rozin (2006)
Visual Mathematics
Similarity:
Michał Kisielewicz (1975)
Annales Polonici Mathematici
Similarity:
Avalishvili, G., Gordeziani, D. (1999)
Bulletin of TICMI
Similarity:
J. Kisyński (1970)
Colloquium Mathematicae
Similarity:
Sudhanshu K. Ghoshal, Abha Ghoshal, M. Abu-Masood (1977)
Annales Polonici Mathematici
Similarity:
Demirel, Oğuzhan, Soytürk, Emine (2008)
Novi Sad Journal of Mathematics
Similarity:
R. Krasnodębski (1970)
Colloquium Mathematicae
Similarity:
Jan Dymara, Damian Osajda (2007)
Fundamenta Mathematicae
Similarity:
We prove that the boundary of a right-angled hyperbolic building is a universal Menger space. As a consequence, the 3-dimensional universal Menger space is the boundary of some Gromov-hyperbolic group.
Oğuzhan Demirel (2009)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.
Romanov, V. G. (2003)
Sibirskij Matematicheskij Zhurnal
Similarity:
William Abikoff (1984)
Mathematica Scandinavica
Similarity:
Sergei Buyalo, Viktor Schroeder (2015)
Analysis and Geometry in Metric Spaces
Similarity:
We characterize the boundary at infinity of a complex hyperbolic space as a compact Ptolemy space that satisfies four incidence axioms.