The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On fans”

First countable spaces without point-countable π-bases

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy (2007)

Fundamenta Mathematicae

Similarity:

We answer several questions of V. Tkachuk [Fund. Math. 186 (2005)] by showing that ∙ there is a ZFC example of a first countable, 0-dimensional Hausdorff space with no point-countable π-base (in fact, the minimum order of a π-base of the space can be made arbitrarily large); ∙ if there is a κ-Suslin line then there is a first countable GO-space of cardinality κ⁺ in which the order of any π-base is at least κ; ∙ it is consistent to have a...

Definability of small puncture sets

Andrés Eduardo Caicedo, John Daniel Clemens, Clinton Taylor Conley, Benjamin David Miller (2011)

Fundamenta Mathematicae

Similarity:

We characterize the class of definable families of countable sets for which there is a single countable definable set intersecting every element of the family.

Countable fan-tightness versus countable tightness

Aleksander V. Arhangel'skii, Angelo Bella (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Countable tightness is compared to the stronger notion of countable fan-tightness. In particular, we prove that countable tightness is equivalent to countable fan-tightness in countably compact regular spaces, and that countable fan-tightness is preserved by pseudo-open compact mappings. We also discuss the behaviour of countable tightness and of countable fan-tightness under the product operation.

The Lindelöf number greater than continuum is u-invariant

Arbit, A. V. (2011)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 54C35, 54D20, 54C60. Two Tychonoff spaces X and Y are said to be l-equivalent (u-equivalent) if Cp(X) and Cp(Y) are linearly (uniformly) homeomorphic. N. V. Velichko proved that countable Lindelöf number is preserved by the relation of l-equivalence. A. Bouziad strengthened this result and proved that any Lindelöf number is preserved by the relation of l-equivalence. In this paper it has been proved that the Lindelöf number greater...