Displaying similar documents to “H-closed and extremally disconnected Hausdorff spaces”

On the attractors of Feigenbaum maps

Guifeng Huang, Lidong Wang (2014)

Annales Polonici Mathematici

Similarity:

A solution of the Feigenbaum functional equation is called a Feigenbaum map. We investigate the likely limit set (i.e. the maximal attractor in the sense of Milnor) of a non-unimodal Feigenbaum map, prove that it is a minimal set that attracts almost all points, and then estimate its Hausdorff dimension. Finally, for every s ∈ (0,1), we construct a non-unimodal Feigenbaum map with a likely limit set whose Hausdorff dimension is s.

On the Hausdorff dimension of a family of self-similar sets with complicated overlaps

Balázs Bárány (2009)

Fundamenta Mathematicae

Similarity:

We investigate the properties of the Hausdorff dimension of the attractor of the iterated function system (IFS) {γx,λx,λx+1}. Since two maps have the same fixed point, there are very complicated overlaps, and it is not possible to directly apply known techniques. We give a formula for the Hausdorff dimension of the attractor for Lebesgue almost all parameters (γ,λ), γ < λ. This result only holds for almost all parameters: we find a dense set of parameters (γ,λ) for which the Hausdorff...

Contracting-on-Average Baker Maps

Michał Rams (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We estimate from above and below the Hausdorff dimension of SRB measure for contracting-on-average baker maps.

H-closed functions

Filippo Cammaroto, Vitaly V. Fedorcuk, Jack R. Porter (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The notion of a Hausdorff function is generalized to the concept of H-closed function and the concept of an H-closed extension of a Hausdorff function is developed. Each Hausdorff function is shown to have an H-closed extension.

Hausdorff gaps and towers in 𝓟(ω)/Fin

Piotr Borodulin-Nadzieja, David Chodounský (2015)

Fundamenta Mathematicae

Similarity:

We define and study two classes of uncountable ⊆*-chains: Hausdorff towers and Suslin towers. We discuss their existence in various models of set theory. Some of the results and methods are used to provide examples of indestructible gaps not equivalent to a Hausdorff gap. We also indicate possible ways of developing a structure theory for towers based on classification of their Tukey types.

On definably proper maps

Mário J. Edmundo, Marcello Mamino, Luca Prelli (2016)

Fundamenta Mathematicae

Similarity:

In this paper we work in o-minimal structures with definable Skolem functions, and show that: (i) a Hausdorff definably compact definable space is definably normal; (ii) a continuous definable map between Hausdorff locally definably compact definable spaces is definably proper if and only if it is a proper morphism in the category of definable spaces. We give several other characterizations of definably proper, including one involving the existence of limits of definable types. We also...