Group structure in finite coverings of compact solenoidal groups.
Grigorian, S.A., Gumerov, R.N., Kazantsev, A.V. (2000)
Lobachevskii Journal of Mathematics
Similarity:
Grigorian, S.A., Gumerov, R.N., Kazantsev, A.V. (2000)
Lobachevskii Journal of Mathematics
Similarity:
Hao Pan, Zhi-Wei Sun (2007)
Acta Arithmetica
Similarity:
Rastislav Telgársky (1976)
Colloquium Mathematicae
Similarity:
Lj. D. Kočinac (1992)
Matematički Vesnik
Similarity:
Arens, Richard, Dugundji, J. (1950)
Portugaliae mathematica
Similarity:
Karol Borsuk, Rimas Vaina (1979)
Colloquium Mathematicae
Similarity:
G. J. Michaelides (1981)
Colloquium Mathematicae
Similarity:
Worrell, J.M. jr. (1966)
Portugaliae mathematica
Similarity:
Sumit Singh (2022)
Mathematica Bohemica
Similarity:
Grigorian, S.A., Gumerov, R.N. (2002)
Lobachevskii Journal of Mathematics
Similarity:
Joós, Antal (2008)
Beiträge zur Algebra und Geometrie
Similarity:
Sang-Eon Han (2010)
International Journal of Applied Mathematics and Computer Science
Similarity:
In order to classify digital spaces in terms of digital-homotopic theoretical tools, a recent paper by Han (2006b) (see also the works of Boxer and Karaca (2008) as well as Han (2007b)) established the notion of regular covering space from the viewpoint of digital covering theory and studied an automorphism group (or Deck's discrete transformation group) of a digital covering. By using these tools, we can calculate digital fundamental groups of some digital spaces and classify digital...