Displaying similar documents to “The relative consistency of some consequences of the existence of measurable cardinal numbers”

The consistency strength of the tree property at the double successor of a measurable cardina

Natasha Dobrinen, Sy-David Friedman (2010)

Fundamenta Mathematicae

Similarity:

The Main Theorem is the equiconsistency of the following two statements: (1) κ is a measurable cardinal and the tree property holds at κ⁺⁺; (2) κ is a weakly compact hypermeasurable cardinal. From the proof of the Main Theorem, two internal consistency results follow: If there is a weakly compact hypermeasurable cardinal and a measurable cardinal far enough above it, then there is an inner model in which there is a proper class of measurable cardinals, and in which the tree property...

HOD-supercompactness, Indestructibility, and Level by Level Equivalence

Arthur W. Apter, Shoshana Friedman (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

In an attempt to extend the property of being supercompact but not HOD-supercompact to a proper class of indestructibly supercompact cardinals, a theorem is discovered about a proper class of indestructibly supercompact cardinals which reveals a surprising incompatibility. However, it is still possible to force to get a model in which the property of being supercompact but not HOD-supercompact holds for the least supercompact cardinal κ₀, κ₀ is indestructibly supercompact, the strongly...

Continuous tree-like scales

James Cummings (2010)

Open Mathematics

Similarity:

Answering a question raised by Luis Pereira, we show that a continuous tree-like scale can exist above a supercompact cardinal. We also show that the existence of a continuous tree-like scale at ℵω is consistent with Martin’s Maximum.