Displaying similar documents to “Classifier PGN: Classification with High Confidence Rules”

Improving feature selection process resistance to failures caused by curse-of-dimensionality effects

Petr Somol, Jiří Grim, Jana Novovičová, Pavel Pudil (2011)

Kybernetika

Similarity:

The purpose of feature selection in machine learning is at least two-fold - saving measurement acquisition costs and reducing the negative effects of the curse of dimensionality with the aim to improve the accuracy of the models and the classification rate of classifiers with respect to previously unknown data. Yet it has been shown recently that the process of feature selection itself can be negatively affected by the very same curse of dimensionality - feature selection methods may...

Experiments with two Approaches for Tracking Drifting Concepts

Koychev, Ivan (2007)

Serdica Journal of Computing

Similarity:

This paper addresses the task of learning classifiers from streams of labelled data. In this case we can face the problem that the underlying concepts can change over time. The paper studies two mechanisms developed for dealing with changing concepts. Both are based on the time window idea. The first one forgets gradually, by assigning to the examples weight that gradually decreases over time. The second one uses a statistical test to detect changes in concept and then optimizes the...

Mining indirect association rules for web recommendation

Przemysław Kazienko (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

Classical association rules, here called “direct”, reflect relationships existing between items that relatively often co-occur in common transactions. In the web domain, items correspond to pages and transactions to user sessions. The main idea of the new approach presented is to discover indirect associations existing between pages that rarely occur together but there are other, “third” pages, called transitive, with which they appear relatively frequently. Two types of indirect associations...

Minimal decision rules based on the apriori algorithm

María Fernández, Ernestina Menasalvas, Óscar Marbán, José Peña, Socorro Millán (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

Based on rough set theory many algorithms for rules extraction from data have been proposed. Decision rules can be obtained directly from a database. Some condition values may be unnecessary in a decision rule produced directly from the database. Such values can then be eliminated to create a more comprehensible (minimal) rule. Most of the algorithms that have been proposed to calculate minimal rules are based on rough set theory or machine learning. In our approach, in a post-processing...

A rough set-based knowledge discovery process

Ning Zhong, Andrzej Skowron (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

The knowledge discovery from real-life databases is a multi-phase process consisting of numerous steps, including attribute selection, discretization of real-valued attributes, and rule induction. In the paper, we discuss a rule discovery process that is based on rough set theory. The core of the process is a soft hybrid induction system called the Generalized Distribution Table and Rough Set System (GDT-RS) for discovering classification rules from databases with uncertain and incomplete...

Combined classifier based on feature space partitioning

Michał Woźniak, Bartosz Krawczyk (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper presents a significant modification to the AdaSS (Adaptive Splitting and Selection) algorithm, which was developed several years ago. The method is based on the simultaneous partitioning of the feature space and an assignment of a compound classifier to each of the subsets. The original version of the algorithm uses a classifier committee and a majority voting rule to arrive at a decision. The proposed modification replaces the fairly simple fusion method with a combined classifier,...