Displaying similar documents to “Tchebotaröv’s extremal problem”

Erratum to “Tchebotaröv’s extremal problem”

Promarz Tamrazov (2009)

Open Mathematics

Similarity:

The original version of the article was published in Central European Journal of Mathematics, 2005, 3(4), 591–605. Unfortunately, the original version of this article contains a mistake. We give some corrections to our work.

Preface

Miodrag Mateljević (2004)

Publications de l'Institut Mathématique

Similarity:

Koebe's general uniformisation theorem for planar Riemann surfaces

Gollakota V. V. Hemasundar (2011)

Annales Polonici Mathematici

Similarity:

We give a complete and transparent proof of Koebe's General Uniformisation Theorem that every planar Riemann surface is biholomorphic to a domain in the Riemann sphere ℂ̂, by showing that a domain with analytic boundary and at least two boundary components on a planar Riemann surface is biholomorphic to a circular-slit annulus in ℂ.

Riemann problem on the double of a multiply connected circular region

V. V. Mityushev (1997)

Annales Polonici Mathematici

Similarity:

The Riemann problem has been solved in [9] for an arbitrary closed Riemann surface in terms of the principal functionals. This paper is devoted to solution of the problem only for the double of a multiply connected region and can be treated as complementary to [9,1]. We obtain a complete solution of the Riemann problem in that particular case. The solution is given in analytic form by a Poincaré series.

Algebro-geometric approach to the Ernst equation I. Mathematical Preliminaries

O. Richter, C. Klein (1997)

Banach Center Publications

Similarity:

1. Introduction. It is well known that methods of algebraic geometry and, in particular, Riemann surface techniques are well suited for the solution of nonlinear integrable equations. For instance, for nonlinear evolution equations, so called 'finite gap' solutions have been found by the help of these methods. In 1989 Korotkin [9] succeeded in applying these techniques to the Ernst equation, which is equivalent to Einstein's vacuum equation for axisymmetric stationary fields. But, the...