Displaying similar documents to “On 0-homology of categorical at zero semigroups”

Homology and cohomology of Rees semigroup algebras

Frédéric Gourdeau, Niels Grønbæk, Michael C. White (2011)

Studia Mathematica

Similarity:

Let S be a Rees semigroup, and let ℓ¹(S) be its convolution semigroup algebra. Using Morita equivalence we show that bounded Hochschild homology and cohomology of ℓ¹(S) are isomorphic to those of the underlying discrete group algebra.

Inflation of Semigroups

Stojan Bogdanović, Svetozar Milić (1987)

Publications de l'Institut Mathématique

Similarity:

Transverse Homology Groups

S. Dragotti, G. Magro, L. Parlato (2006)

Bollettino dell'Unione Matematica Italiana

Similarity:

We give, here, a geometric treatment of intersection homology theory.

Steenrod homology

Yu. T. Lisitsa, S. Mardešić (1986)

Banach Center Publications

Similarity:

Khovanov homology, its definitions and ramifications

Oleg Viro (2004)

Fundamenta Mathematicae

Similarity:

Mikhail Khovanov defined, for a diagram of an oriented classical link, a collection of groups labelled by pairs of integers. These groups were constructed as the homology groups of certain chain complexes. The Euler characteristics of these complexes are the coefficients of the Jones polynomial of the link. The original construction is overloaded with algebraic details. Most of the specialists use adaptations of it stripped off the details. The goal of this paper is to overview these...

Relationship among various Vietoris-type and microsimplicial homology theories

Takuma Imamura (2021)

Archivum Mathematicum

Similarity:

In this paper, we clarify the relationship among the Vietoris-type homology theories and the microsimplicial homology theories, where the latter are nonstandard homology theories defined by M.C. McCord (for topological spaces), T. Korppi (for completely regular topological spaces) and the author (for uniform spaces). We show that McCord’s and our homology are isomorphic for all compact uniform spaces and that Korppi’s and our homology are isomorphic for all fine uniform spaces. Our homology...