The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Conditions for strong Morita equivalence of partially ordered semigroups”

Pointed principally ordered regular semigroups

T.S. Blyth, G.A. Pinto (2016)

Discussiones Mathematicae General Algebra and Applications

Similarity:

An ordered semigroup S is said to be principally ordered if, for every x ∈ S there exists x* = max{y ∈ S | xyx ⩽ x}. Here we investigate those principally ordered regular semigroups that are pointed in the sense that the classes modulo Green's relations ℒ,ℛ,𝒟 have biggest elements which are idempotent. Such a semigroup is necessarily a semiband. In particular we describe the subalgebra of (S;*) generated by a pair of comparable idempotents that are 𝒟-related. We also prove that those...

Generalized F -semigroups

E. Giraldes, P. Marques-Smith, Heinz Mitsch (2005)

Mathematica Bohemica

Similarity:

A semigroup S is called a generalized F -semigroup if there exists a group congruence on S such that the identity class contains a greatest element with respect to the natural partial order S of S . Using the concept of an anticone, all partially ordered groups which are epimorphic images of a semigroup ( S , · , S ) are determined. It is shown that a semigroup S is a generalized F -semigroup if and only if S contains an anticone, which is a principal order ideal of ( S , S ) . Also a characterization by means...