The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Topological algebras with maximal regular ideals closed”

On locally pseudoconvexes square algebras.

Jorma Arhippainen (1995)

Publicacions Matemàtiques

Similarity:

Let A be an algebra over the field of complex numbers with a (Hausdorff) topology given by a family Q = {q|λ ∈ Λ} of square preserving r-homogeneous seminorms (r ∈ (0, 1]). We shall show that (A, T(Q)) is a locally m-convex algebra. Furthermore we shall show that A is commutative.

On vector spaces and algebras with maximal locally pseudoconvex topologies

A. Kokk, W. Żelazko (1995)

Studia Mathematica

Similarity:

Let X be a real or complex vector space. We show that the maximal p-convex topology makes X a complete Hausdorff topological vector space. If X has an uncountable dimension, then different p give different topologies. However, if the dimension of X is at most countable, then all these topologies coincide. This leads to an example of a complete locally pseudoconvex space X that is not locally convex, but all of whose separable subspaces are locally convex. We apply these results to topological...

A characterization of maximal regular ideals in lmc algebras

Maria Fragoulopoulou (1992)

Studia Mathematica

Similarity:

A question of Warner and Whitley concerning a nonunital version of the Gleason-Kahane-Żelazko theorem is considered in the context of nonnormed topological algebras. Among other things it is shown that a closed hyperplane M of a commutative symmetric F*-algebra E with Lindelöf Gel'fand space is a maximal regular ideal iff each element of M belongs to some closed maximal regular ideal of E.