Displaying similar documents to “ACM bundles, quintic threefolds and counting problems”

Rank-two vector bundles on general quartic hypersurfaces in P.

Carlo Madonna (2000)

Revista Matemática Complutense

Similarity:

In this paper all non-splitting rank-two vector bundles E without intermediate cohomology on a general quartic hypersurface X in P are classified. In particular, the existence of some curves on a general quartic hypersurface is proved.

Remarks on Seshadri constants of vector bundles

Christopher Hacon (2000)

Annales de l'institut Fourier

Similarity:

We give a lower bound for the Seshadri constants of ample vector bundles which depends only on the numerical properties of the Chern classes and on a “stability” condition.

On Buchsbaum bundles on quadric hypersurfaces

Edoardo Ballico, Francesco Malaspina, Paolo Valabrega, Mario Valenzano (2012)

Open Mathematics

Similarity:

Let E be an indecomposable rank two vector bundle on the projective space ℙn, n ≥ 3, over an algebraically closed field of characteristic zero. It is well known that E is arithmetically Buchsbaum if and only if n = 3 and E is a null-correlation bundle. In the present paper we establish an analogous result for rank two indecomposable arithmetically Buchsbaum vector bundles on the smooth quadric hypersurface Q n ⊂ ℙn+1, n ≥ 3. We give in fact a full classification and prove that n must...

On the cohomological strata of families of vector bundles on algebraic surfaces

Edoardo Ballico (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In this Note we study certain natural subsets of the cohomological stratification of the moduli spaces of rank 2 vector bundles on an algebraic surface. In the last section we consider the following problem: take a bundle E given by an extension, how can one recognize that E is a certain given bundle? The most interesting case considered here is the case E = T P 3 t since it applies to the study of codimension 1 meromorphic foliations with singularities on P 3 .