Displaying similar documents to “Non-hyperbolicity in random regular graphs and their traffic characteristics”

Lack of Gromov-hyperbolicity in small-world networks

Yilun Shang (2012)

Open Mathematics

Similarity:

The geometry of complex networks is closely related with their structure and function. In this paper, we investigate the Gromov-hyperbolicity of the Newman-Watts model of small-world networks. It is known that asymptotic Erdős-Rényi random graphs are not hyperbolic. We show that the Newman-Watts ones built on top of them by adding lattice-induced clustering are not hyperbolic as the network size goes to infinity. Numerical simulations are provided to illustrate the effects of various...

The hyperbolicity constant of infinite circulant graphs

José M. Rodríguez, José M. Sigarreta (2017)

Open Mathematics

Similarity:

If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. Deciding whether or not a graph is hyperbolic is usually very difficult; therefore, it is interesting to find classes of graphs which are hyperbolic. A graph...

Gromov hyperbolic cubic graphs

Domingo Pestana, José Rodríguez, José Sigarreta, María Villeta (2012)

Open Mathematics

Similarity:

If X is a geodesic metric space and x 1; x 2; x 3 ∈ X, a geodesic triangle T = {x 1; x 2; x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) = inf {δ ≥ 0: X is δ-hyperbolic}. We obtain information about the hyperbolicity...

Gromov hyperbolicity of planar graphs

Alicia Cantón, Ana Granados, Domingo Pestana, José Rodríguez (2013)

Open Mathematics

Similarity:

We prove that under appropriate assumptions adding or removing an infinite amount of edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general. In particular, we make a conjecture that every tessellation graph of ℝ2 with convex tiles is non-hyperbolic; it is shown that in order to prove this conjecture it suffices to consider tessellation graphs of ℝ2 such that every tile is a triangle and a partial answer to this question is given....

Control flow graphs and code coverage

Robert Gold (2010)

International Journal of Applied Mathematics and Computer Science

Similarity:

The control flow of programs can be represented by directed graphs. In this paper we provide a uniform and detailed formal basis for control flow graphs combining known definitions and results with new aspects. Two graph reductions are defined using only syntactical information about the graphs, but no semantical information about the represented programs. We prove some properties of reduced graphs and also about the paths in reduced graphs. Based on graphs, we define statement coverage...