Displaying similar documents to “Numerical modelling of viscous and viscoelastic fluids flow through the branching channel”

Numerical modelling of steady and unsteady flows of generalized Newtonian fluids

Keslerová, Radka, Trdlička, David, Řezníček, Hynek

Similarity:

This work presents the numerical solution of laminar incompressible viscous flow in a three dimensional branching channel with circular cross section for generalized Newtonian fluids. This model can be generalized by cross model in shear thinning meaning. The governing system of equations is based on the system of balance laws for mass and momentum. Numerical tests are performed on a three dimensional geometry, the branching channel with one entrance and two outlet parts. Numerical solution...

Steady and unsteady 2D numerical solution of generalized Newtonian fluids flow

Keslerová, Radka, Kozel, Karel

Similarity:

This article presents the numerical solution of laminar incompressible viscous flow in a branching channel for generalized Newtonian fluids. The governing system of equations is based on the system of balance laws for mass and momentum. The generalized Newtonian fluids differ through choice of a viscosity function. A power-law model with different values of power-law index is used. Numerical solution of the described models is based on cell-centered finite volume method using explicit...

Numerical simulation of generalized Newtonian and Oldroyd-B fluids flow

Keslerová, Radka, Kozel, Karel

Similarity:

This work deals with the numerical solution of generalized Newtonian and Oldroyd-B fluids flow. The governing system of equations is based on the system of balance laws for mass and momentum for incompressible laminar viscous and viscoelastic fluids. Two different definition of the stress tensor are considered. For viscous case Newtonian model is used. For the viscoelastic case Oldroyd-B model is tested. Both presented models can be generalized. In this case the viscosity is defined...

Consistent streamline residual-based artificial viscosity stabilization for numerical simulation of incompressible turbulent flow by isogeometric analysis

Bohumír Bastl, Marek Brandner, Kristýna Slabá, Eva Turnerová (2022)

Applications of Mathematics

Similarity:

In this paper, we propose a new stabilization technique for numerical simulation of incompressible turbulent flow by solving Reynolds-averaged Navier-Stokes equations closed by the SST k - ω turbulence model. The stabilization scheme is constructed such that it is consistent in the sense used in the finite element method, artificial diffusion is added only in the direction of convection and it is based on a purely nonlinear approach. We present numerical results obtained by our in-house...

Numerical comparison of unsteady compressible viscous flow in convergent channel

Pořízková, Petra, Kozel, Karel, Horáček, Jaromír

Similarity:

This study deals with a numerical solution of a 2D flows of a compressible viscous fluids in a convergent channel for low inlet airflow velocity. Three governing systems – Full system, Adiabatic system, Iso-energetic system b a s e d o n t h e N a v i e r - S t o k e s e q u a t i o n s f o r l a m i n a r f l o w a r e t e s t e d . T h e n u m e r i c a l s o l u t i o n i s r e a l i z e d b y f i n i t e v o l u m e m e t h o d a n d t h e p r e d i c t o r - c o r r e c t o r M a c C o r m a c k s c h e m e w i t h J a m e s o n a r t i f i c i a l v i s c o s i t y u s i n g a g r i d o f q u a d r i l a t e r a l c e l l s . T h e u n s t e a d y g r i d o f q u a d r i l a t e r a l c e l l s i s c o n s i d e r e d i n t h e f o r m o f c o n s e r v a t i o n l a w s u s i n g A r b i t r a r y L a g r a n g i a n - E u l e r i a n m e t h o d . T h e n u m e r i c a l r e s u l t s , a c q u i r e d f r o m a d e v e l o p e d p r o g r a m , a r e p r e s e n t e d f o r i n l e t v e l o c i t y u=4.12 ms-1 a n d R e y n o l d s n u m b e r R e = 4 103 .

Numerical solution of 2D and 3D incompressible laminar flows through a branching channel

Keslerová, Radka, Kozel, Karel

Similarity:

In this paper, we are concerned with the numerical solution of 2D/3D flows through a branching channel where viscous incompressible laminar fluid flow is considered. The mathematical model in this case can be described by the system of the incompressible Navier-Stokes equations and the continuity equation. In order to obtain the steady state solution the artificial compressibility method is applied. The finite volume method is used for spatial discretization. The arising system of ordinary...