Displaying similar documents to “Model analysis of BPX preconditioner based on smoothed aggregation”

Improved convergence bounds for smoothed aggregation method: linear dependence of the convergence rate on the number of levels

Jan Brousek, Pavla Fraňková, Petr Vaněk (2016)

Czechoslovak Mathematical Journal

Similarity:

The smoothed aggregation method has became a widely used tool for solving the linear systems arising by the discretization of elliptic partial differential equations and their singular perturbations. The smoothed aggregation method is an algebraic multigrid technique where the prolongators are constructed in two steps. First, the tentative prolongator is constructed by the aggregation (or, the generalized aggregation) method. Then, the range of the tentative prolongator is smoothed by...

Analysis of two-level domain decomposition preconditioners based on aggregation

Marzio Sala (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper we present two-level overlapping domain decomposition preconditioners for the finite-element discretisation of elliptic problems in two and three dimensions. The computational domain is partitioned into overlapping subdomains, and a coarse space correction is added. We present an algebraic way to define the coarse space, based on the concept of aggregation. This employs a (smoothed) aggregation technique and does not require the introduction of a coarse grid. We consider...

Composite grid finite element method: Implementation and iterative solution with inexact subproblems

Radim Blaheta, P. Byczanski, Roman Kohut (2002)

Applications of Mathematics

Similarity:

This paper concerns the composite grid finite element (FE) method for solving boundary value problems in the cases which require local grid refinement for enhancing the approximating properties of the corresponding FE space. A special interest is given to iterative methods based on natural decomposition of the space of unknowns and to the implementation of both the composite grid FEM and the iterative procedures for its solution. The implementation is important for gaining all benefits...

Parallel solution of elasticity problems using overlapping aggregations

Roman Kohut (2018)

Applications of Mathematics

Similarity:

The finite element (FE) solution of geotechnical elasticity problems leads to the solution of a large system of linear equations. For solving the system, we use the preconditioned conjugate gradient (PCG) method with two-level additive Schwarz preconditioner. The preconditioning is realised in parallel. A coarse space is usually constructed using an aggregation technique. If the finite element spaces for coarse and fine problems on structural grids are fully compatible, relations between...

Multiscale finite element coarse spaces for the application to linear elasticity

Marco Buck, Oleg Iliev, Heiko Andrä (2013)

Open Mathematics

Similarity:

We extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the...